Higher transmissibility of SARS-CoV-2 in cold and dry weather conditions has been hypothesized since the onset of the COVID-19 pandemic but the level of epidemiological evidence remains low. During the first wave of the pandemic, Spain, Italy, France, Portugal, Canada and USA presented an early spread, a heavy COVID-19 burden, and low initial public health response until lockdowns. In a context when testing was limited, we calculated the basic reproduction number (R0) in 63 regions from the growth in regional death counts. After adjusting for population density, early spread of the epidemic, and age structure, temperature and humidity were negatively associated with SARS-CoV-2 transmissibility. A reduction of mean absolute humidity by 1 g/m3 was associated with a 0.15-unit increase of R0. Below 10 °C, a temperature reduction of 1 °C was associated with a 0.16-unit increase of R0. Our results confirm a dependency of SARS-CoV-2 transmissibility to weather conditions in the absence of control measures during the first wave. The transition from summer to winter, corresponding to drop in temperature associated with an overall decrease in absolute humidity, likely contributed to the intensification of the second wave in north-west hemisphere countries. Non-pharmaceutical interventions must be adjusted to account for increased transmissibility in winter conditions.
In response to the COVID-19 pandemic caused by SARS-CoV-2, governments have adopted a wide range of non-pharmaceutical interventions (NPI). These include stringent measures such as strict lockdowns, closing schools, bars and restaurants, curfews, and barrier gestures such as mask-wearing and social distancing. Deciphering the effectiveness of each NPI is critical to responding to future waves and outbreaks. To this end, we first develop a dynamic model of the French COVID-19 epidemics over a one-year period. We rely on a global extended Susceptible-Infectious-Recovered (SIR) mechanistic model of infection that includes a dynamic transmission rate over time. Multilevel data across French regions are integrated using random effects on the parameters of the mechanistic model, boosting statistical power by multiplying integrated observation series. We estimate the parameters using a new population-based statistical approach based on a Kalman filter, used for the first time in analysing real-world data. We then fit the estimated time-varying transmission rate using a regression model that depends on the NPIs while accounting for vaccination coverage, the occurrence of variants of concern (VoC), and seasonal weather conditions. We show that all NPIs considered have an independent significant association with transmission rates. In addition, we show a strong association between weather conditions that reduces transmission in summer, and we also estimate increased transmissibility of VoC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.