The spatial confinement of surface plasmon polaritons is a promising route for realizing optical on-board interconnects. However, mode losses increase with the confinement factor. To overcome this road block, we investigate propagation assisted by stimulated emission in a polymer strip-loaded plasmonic waveguide doped with nanocrystals. We achieve 27% increase of the propagation length at telecom wavelength corresponding to a 160 cm(-1) optical gain coefficient. Such a configuration is a step toward integrated plasmonic amplifiers.
The selective surface modification by phosphonic acids of SiO 2 -TiO 2 supports at the micrometer and molecular scale was investigated. Under aqueous conditions, phosphonic acids bind to TiO 2 and not to SiO 2 surfaces. A micropatterned support was prepared by electron beam microlithography and selectivity, of the surface modification was evidenced using scanning Auger electron spectroscopy (SAES). The second support was a mesoporous SiO 2 -TiO 2 mixed oxide (10 mol % Ti) epoxidation catalyst prepared by sol-gel processing. Selectivity was deduced from the decrease of the catalytic activity upon modification and from chemical analysis; bonding modes to the surface were investigated using solid-state 29 Si and 31 P MAS NMR. The possibility to introduce different organic groups by successive treatments with a phosphonic acid and a silylating agent was illustrated in the case of the mixed oxide.
We report preliminary results on the development of compact (length < 100 microm) fiber-coupled dielectric-loaded plasmonic waveguide components, including Mach-Zehnder interferometers (MZIs), waveguide-ring resonators (WRRs) and directional couplers (DCs), whose operation at telecom wavelengths is controlled via the thermo-optic effect by electrically heating the gold stripes of dielectric-loaded plasmonic waveguides. Strong output modulation (> 20%) is demonstrated with MZI- and WRR-based components, and efficient (approximately 30%) rerouting is achieved with DC switches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.