Chemotherapy-resistant human acute myeloid leukemia (AML) cells are thought to be enriched in quiescent immature leukemic stem cells (LSCs). To validate this hypothesis in vivo, we developed a clinically relevant chemotherapeutic approach treating patient-derived xenograft (PDX) with cytarabine. Cytarabine residual AML cells are enriched neither in immature, quiescent cells nor LSCs. Strikingly, cytarabine-resistant pre-existing and persisting cells displayed high levels of reactive oxygen species, showed increased mitochondrial mass, and retained active polarized mitochondria, consistent with a high oxidative phosphorylation (OXPHOS) status. Cytarabine residual cells exhibited increased fatty acid oxidation, upregulated CD36 expression and a HIGH OXPHOS gene signature predictive for treatment response in PDX and AML patients. HIGH OXPHOS but not LOW OXPHOS human AML cell lines were chemoresistant in vivo. Targeting mitochondrial protein synthesis, electron transfer, or fatty acid oxidation induced an energetic shift towards LOW OXPHOS and markedly enhanced anti-leukemic effects of cytarabine. Together, this study demonstrates that essential mitochondrial functions contribute to cytarabine resistance in AML and are a robust hallmark of cytarabine sensitivity and a promising therapeutic avenue to treat AML residual disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.