Pancreatic β cell dysfunction is pathognomonic of type 2 diabetes mellitus (T2DM) and is driven by environmental and genetic factors. β cell responses to glucose and to incretins such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are altered in the disease state. While rodent β cells act as a coordinated syncytium to drive insulin release, this property is unexplored in human islets. In situ imaging approaches were therefore used to monitor in real time the islet dynamics underlying hormone release. We found that GLP-1 and GIP recruit a highly coordinated subnetwork of β cells that are targeted by lipotoxicity to suppress insulin secretion. Donor BMI was negatively correlated with subpopulation responses to GLP-1, suggesting that this action of incretin contributes to functional β cell mass in vivo. Conversely, exposure of mice to a high-fat diet unveiled a role for incretin in maintaining coordinated islet activity, supporting the existence of species-specific strategies to maintain normoglycemia. These findings demonstrate that β cell connectedness is an inherent property of human islets that is likely to influence incretin-potentiated insulin secretion and may be perturbed by diabetogenic insults to disrupt glucose homeostasis in humans.
Background-Ca2ϩ release from the sarcoplasmic reticulum via the ryanodine receptor (RyR2) activates cardiac myocyte contraction. An important regulator of RyR2 function is FKBP12.6, which stabilizes RyR2 in the closed state during diastole. -Adrenergic stimulation has been suggested to dissociate FKBP12.6 from RyR2, leading to diastolic sarcoplasmic reticulum Ca 2ϩ leakage and ventricular tachycardia (VT). We tested the hypothesis that FKBP12.6 overexpression in cardiac myocytes can reduce susceptibility to VT in stress conditions. Methods and Results-We developed a mouse model with conditional cardiac-specific overexpression of FKBP12.6.Transgenic mouse hearts showed a marked increase in FKBP12.6 binding to RyR2 compared with controls both at baseline and on isoproterenol stimulation (0.2 mg/kg IP). After pretreatment with isoproterenol, burst pacing induced VT in 10 of 23 control mice but in only 1 of 14 transgenic mice (PϽ0.05). In isolated transgenic myocytes, Ca 2ϩ spark frequency was reduced by 50% (PϽ0.01), a reduction that persisted under isoproterenol stimulation, whereas the sarcoplasmic reticulum Ca 2ϩ load remained unchanged. In parallel, peak I Ca,L density decreased by 15% (PϽ0.01), and the Ca 2ϩ transient peak amplitude decreased by 30% (PϽ0.001). A 33.5% prolongation of the caffeine-evoked Ca 2ϩ transient decay was associated with an 18% reduction in the Na ϩ -Ca 2ϩ exchanger protein level (PϽ0.05). Conclusions-Increased FKBP12.6 binding to RyR2 prevents triggered VT in normal hearts in stress conditions, probably by reducing diastolic sarcoplasmic reticulum Ca 2ϩ leak. This indicates that the FKBP12.6-RyR2 complex is an important candidate target for pharmacological prevention of VT.
Abstract-Block of Na/Ca exchange (NCX) has potential therapeutic applications, in particular, if a mode-selective block could be achieved, but also carries serious risks for disturbing the normal Ca 2ϩ balance maintained by NCX. We have examined the effects of partial inhibition of NCX by SEA-0400 (1 or 0.3 mol/L) in left ventricular myocytes from healthy pigs or mice and from mice with heart failure (MLP Ϫ/Ϫ handling by refining mode dependence and/or including additional targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.