Background Empagliflozin is a sodium-glucose cotransporter 2 (SGLT2) inhibitor that has demonstrated cardiovascular and renal protection in patients with type 2 diabetes (T2D). We hypothesized that empaglifozin (EMPA) could modulate ectopic fat stores and myocardial energetics in high-fat-high-sucrose (HFHS) diet mice and in type 2 diabetics (T2D). Methods C57BL/6 HFHS mice (n = 24) and T2D subjects (n = 56) were randomly assigned to 12 weeks of treatment with EMPA (30 mg/kg in mice, 10 mg/day in humans) or with placebo. A 4.7 T or 3 T MRI with 1H-MRS evaluation–myocardial fat (primary endpoint) and liver fat content (LFC)–were performed at baseline and at 12 weeks. In humans, standard cardiac MRI was coupled with myocardial energetics (PCr/ATP) measured with 31P-MRS. Subcutaneous (SAT) abdominal, visceral (VAT), epicardial and pancreatic fat were also evaluated. The primary efficacy endpoint was the change in epicardial fat volume between EMPA and placebo from baseline to 12 weeks. Secondary endpoints were the differences in PCr/ATP ratio, myocardial, liver and pancreatic fat content, SAT and VAT between groups at 12 weeks. Results In mice fed HFHS, EMPA significantly improved glucose tolerance and increased blood ketone bodies (KB) and β-hydroxybutyrate levels (p < 0.05) compared to placebo. Mice fed HFHS had increased myocardial and liver fat content compared to standard diet mice. EMPA significantly attenuated liver fat content by 55%, (p < 0.001) but had no effect on myocardial fat. In the human study, all the 56 patients had normal LV function with mean LVEF = 63.4 ± 7.9%. Compared to placebo, T2D patients treated with EMPA significantly lost weight (− 2.6 kg [− 1.2; − 3.7]) and improved their HbA1c by 0.88 ± 0.74%. Hematocrit and EPO levels were significantly increased in the EMPA group compared to placebo (p < 0.0001, p = 0.041). EMPA significantly increased glycosuria and plasma KB levels compared to placebo (p < 0.0001, p = 0.012, respectively), and significantly reduced liver fat content (− 27 ± 23 vs. − 2 ± 24%, p = 0.0005) and visceral fat (− 7.8% [− 15.3; − 5.6] vs. − 0.1% [− 1.1;6.5], p = 0.043), but had no effect on myocardial or epicardial fat. At 12 weeks, no significant change was observed in the myocardial PCr/ATP (p = 0.57 between groups). Conclusions EMPA effectively reduced liver fat in mice and humans without changing epicardial, myocardial fat or myocardial energetics, rebutting the thrifty substrate hypothesis for cardiovascular protection of SGLT2 inhibitors. Trial registration NCT, NCT03118336. Registered 18 April 2017, https://clinicaltrials.gov/ct2/show/NCT03118336
ObjectiveTo quantitatively describe the MRI fat infiltration pattern of muscle degeneration in Charcot-Marie-Tooth (CMT) type 1A (CMT1A) disease and to look for correlations with clinical variables.MethodsMRI fat fraction was assessed in lower-limb musculature of patients with CMT1A and healthy controls. More particularly, 14 muscle compartments were selected at leg and thigh levels and for proximal, distal, and medial slices. Muscle fat infiltration profile was determined quantitatively in each muscle compartment and along the entire volume of acquisition to determine a length-dependent gradient of fat infiltration. Clinical impairment was evaluated with muscle strength measurements and CMT Examination Scores (CMTESs).ResultsA total of 16 patients with CMT1A were enrolled and compared to 11 healthy controls. Patients with CMT1A showed a larger muscle fat fraction at leg and thigh levels with a proximal-to-distal gradient. At the leg level, the largest fat infiltration was quantified in the anterior and lateral compartments. CMTES was correlated with fat fraction, especially in the anterior compartment of leg muscles. Strength of plantar flexion was also correlated with fat fraction of the posterior compartments of leg muscles.ConclusionOn the basis of quantitative MRI measurements combined with a dedicated segmentation method, muscle fat infiltration quantified in patients with CMT1A disclosed a length-dependent peroneal-type pattern of fat infiltration and was correlated to main clinical variables. Quantification of fat fraction at different levels of the leg anterior compartment might be of interest in future clinical trials.
Increase of TSC in RRMS is mainly related to neuronal mitochondrial dysfunction while dysfunction of neuro-glial interactions within GM is linked to clinical scores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.