SummaryImmune cells in the tumor microenvironment modulate cancer progression and are attractive therapeutic targets. Macrophages and T cells are key components of the microenvironment, yet their phenotypes and relationships in this ecosystem and to clinical outcomes are ill defined. We used mass cytometry with extensive antibody panels to perform in-depth immune profiling of samples from 73 clear cell renal cell carcinoma (ccRCC) patients and five healthy controls. In 3.5 million measured cells, we identified 17 tumor-associated macrophage phenotypes, 22 T cell phenotypes, and a distinct immune composition correlated with progression-free survival, thereby presenting an in-depth human atlas of the immune tumor microenvironment in this disease. This study revealed potential biomarkers and targets for immunotherapy development and validated tools that can be used for immune profiling of other tumor types.
Human papillomavirus negative (HPV-) head and neck squamous cell carcinomas (HNSCC) are deadly and common cancers. Recent genomic studies implicate multiple genetic pathways including cell-signalling, cell-cycle and/or immune evasion in their development. Here, we analyze public datasets and uncover a previously unappreciated role of epigenome deregulation in the genesis of 13% HPV-HNSCCs. Specifically, we identify novel recurrent p.K36M mutations occurring in multiple histone H3 genes. We further validate their presence in multiple independent HNSCC datasets and show that along with previously described NSD1 mutations, they correspond to a specific DNA methylation cluster. H3K36M and NSD1 defects converge on altering H3K36 methylation, subsequently blocking cellular differentiation and promoting oncogenesis. Our data further indicate surprisingly limited redundancy for NSD family members in HPV-HNSCCs and suggest a potential role of impaired H3K36 methylation in their development. Further investigation of drugs targeting chromatin regulators is warranted in HPV-HNSCCs driven by aberrant H3K36 methylation.
Highlights d A large collection of HNSCC patient-derived xenograft models was established d ''Rapid'' engraftment of patient samples is highly prognostic d Genomic deregulation of the G1/S checkpoint pathway correlates with engraftment d CCND1 and CDKN2A genomic alterations are predictive of response to abemaciclib
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.