Glomerular injury and proteinuria in diabetes (types 1 and 2) and IgA nephropathy is related to the degree of podocyte depletion in humans. For determining the causal relationship between podocyte depletion and glomerulosclerosis, a transgenic rat strain in which the human diphtheria toxin receptor is specifically expressed in podocytes was developed. The rodent homologue does not act as a diphtheria toxin (DT) receptor, thereby making rodents resistant to DT. Injection of DT into transgenic rats but not wild-type rats resulted in dose-dependent podocyte depletion from glomeruli. Three stages of glomerular injury caused by podocyte depletion were identified: Stage 1, 0 to 20% depletion showed mesangial expansion, transient proteinuria and normal renal function; stage 2, 21 to 40% depletion showed mesangial expansion, capsular adhesions (synechiae), focal segmental glomerulosclerosis, mild persistent proteinuria, and normal renal function; and stage 3, >40% podocyte depletion showed segmental to global glomerulosclerosis with sustained high-grade proteinuria and reduced renal function. These pathophysiologic consequences of podocyte depletion parallel similar degrees of podocyte depletion, glomerulosclerosis, and proteinuria seen in diabetic glomerulosclerosis. This model system provides strong support for the concept that podocyte depletion could be a major mechanism driving glomerulosclerosis and progressive loss of renal function in human glomerular diseases.
Diabetic nephropathy (DN) is among the most lethal complications that occur in type 1 and type 2 diabetics.Podocyte dysfunction is postulated to be a critical event associated with proteinuria and glomerulosclerosis in glomerular diseases including DN. However, molecular mechanisms of podocyte dysfunction in the development of DN are not well understood. Here we have shown that activity of mTOR complex 1 (mTORC1), a kinase that senses nutrient availability, was enhanced in the podocytes of diabetic animals. Further, podocytespecific mTORC1 activation induced by ablation of an upstream negative regulator (PcKOTsc1) recapitulated many DN features, including podocyte loss, glomerular basement membrane thickening, mesangial expansion, and proteinuria in nondiabetic young and adult mice. Abnormal mTORC1 activation caused mislocalization of slit diaphragm proteins and induced an epithelial-mesenchymal transition-like phenotypic switch with enhanced ER stress in podocytes. Conversely, reduction of ER stress with a chemical chaperone significantly protected against both the podocyte phenotypic switch and podocyte loss in PcKOTsc1 mice. Finally, genetic reduction of podocyte-specific mTORC1 in diabetic animals suppressed the development of DN. These results indicate that mTORC1 activation in podocytes is a critical event in inducing DN and suggest that reduction of podocyte mTORC1 activity is a potential therapeutic strategy to prevent DN.
Podocyte dysfunction, one of the major causes of proteinuria, leads to glomerulosclerosis and end stage renal disease, but its underlying mechanism remains poorly understood. Here we show that Wnt/-catenin signaling plays a critical role in podocyte injury and proteinuria. Treatment with adriamycin induced Wnt and activated -catenin in mouse podocytes. Overexpression of Wnt1 in vivo activated glomerular -catenin and aggravated albuminuria and adriamycin-induced suppression of nephrin expression, whereas blockade of Wnt signaling with Dickkopf-1 ameliorated podocyte lesions. Podocyte-specific knockout of -catenin protected against development of albuminuria after injury. Moreover, pharmacologic activation of -catenin induced albuminuria in wild-type mice but not in -catenin-knockout littermates. In human proteinuric kidney diseases such as diabetic nephropathy and focal segmental glomerulosclerosis, we observed upregulation of Wnt1 and active -catenin in podocytes. Ectopic expression of either Wnt1 or stabilized -catenin in vitro induced the transcription factor Snail and suppressed nephrin expression, leading to podocyte dysfunction. These results suggest that targeting hyperactive Wnt/-catenin signaling may represent a novel therapeutic strategy for proteinuric kidney diseases.
Nephrotic syndrome, a malfunction of the kidney glomerular filter, leads to proteinuria, edema and, in steroid-resistant nephrotic syndrome, end-stage kidney disease. Using positional cloning, we identified mutations in the phospholipase C epsilon gene (PLCE1) as causing early-onset nephrotic syndrome with end-stage kidney disease. Kidney histology of affected individuals showed diffuse mesangial sclerosis (DMS). Using immunofluorescence, we found PLCepsilon1 expression in developing and mature glomerular podocytes and showed that DMS represents an arrest of normal glomerular development. We identified IQ motif-containing GTPase-activating protein 1 as a new interaction partner of PLCepsilon1. Two siblings with a missense mutation in an exon encoding the PLCepsilon1 catalytic domain showed histology characteristic of focal segmental glomerulosclerosis. Notably, two other affected individuals responded to therapy, making this the first report of a molecular cause of nephrotic syndrome that may resolve after therapy. These findings, together with the zebrafish model of human nephrotic syndrome generated by plce1 knockdown, open new inroads into pathophysiology and treatment mechanisms of nephrotic syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.