In response to various environmental stresses, eukaryotic cells down-regulate protein synthesis by phosphorylation of the ␣ subunit of eukaryotic translation initiation factor 2 (eIF-2␣). In mammals, the phosphorylation was shown to be carried out by eIF-2␣ kinases PKR and HRI. We report the identification and characterization of a cDNA from rat pancreatic islet cells that encodes a new related kinase, which we term pancreatic eIF-2␣ kinase, or PEK. In addition to a catalytic domain with sequence and structural features conserved among eIF-2␣ kinases, PEK contains a distinctive amino-terminal region 550 residues in length. Using recombinant PEK produced in Escherichia coli or Sf-9 insect cells, we demonstrate that PEK is autophosphorylated on both serine and threonine residues and that the recombinant enzyme can specifically phosphorylate eIF-2␣ on serine-51. Northern blot analyses indicate that PEK mRNA is expressed in all tissues examined, with highest levels in pancreas cells. Consistent with our mRNA assays, PEK activity was predominantly detected in pancreas and pancreatic islet cells. The regulatory role of PEK in protein synthesis was demonstrated both in vitro and in vivo. The addition of recombinant PEK to reticulocyte lysates caused a dose-dependent inhibition of translation. In the Saccharomyces model system, PEK functionally substituted for the endogenous yeast eIF-2␣ kinase, GCN2, by a process requiring the serine-51 phosphorylation site in eIF-2␣. We also identified PEK homologs from both Caenorhabditis elegans and the puffer fish Fugu rubripes, suggesting that this eIF-2␣ kinase plays an important role in translational control from nematodes to mammals.
The vascular complications of diabetes mellitus have been correlated with enhanced activation of protein kinase C (PKC). LY333531, a specific inhibitor of the beta isoform of PKC, was synthesized and was shown to be a competitive reversible inhibitor of PKC beta 1 and beta 2, with a half-maximal inhibitory constant of approximately 5 nM; this value was one-fiftieth of that for other PKC isoenzymes and one-thousandth of that for non-PKC kinases. When administered orally, LY333531 ameliorated the glomerular filtration rate, albumin excretion rate, and retinal circulation in diabetic rats in a dose-responsive manner, in parallel with its inhibition of PKC activities.
C-peptide, a cleavage product from the processing of proinsulin to insulin, has been considered to possess little if any biological activity other than its participation in insulin synthesis. Injection of human C-peptide prevented or attenuated vascular and neural (electrophysiological) dysfunction and impaired Na+- and K+-dependent adenosine triphosphate activity in tissues of diabetic rats. Nonpolar amino acids in the midportion of the peptide were required for these biological effects. Synthetic reverse sequence (retro) and all-D-amino acid (enantio) C-peptides were equipotent to native C-peptide, which indicates that the effects of C-peptide on diabetic vascular and neural dysfunction were mediated by nonchiral interactions instead of stereospecific receptors or binding sites.
Protein kinase C (PKC) is a family of closely related serine and threonine kinases. Overactivation of some PKC isozymes has been postulated to occur in several diseases states, including diabetic complications. Selective inhibition of overactivated PKC isozymes may offer a unique therapeutic approach to disease states such as diabetic retinopathy. A novel series of 14-membered macrocycles containing a N-N'-bridged bisindolylmaleimide moiety is described. A panel of eight cloned human PKC isozymes (alpha, beta I, beta II, gamma, delta, epsilon, sigma, eta) was used to identify the series and optimize the structure and associated activity relationship. The dimethylamine analogue LY333531 (1), (S)-13-[(dimethylamino)methyl]-10,11,14,15-tetrahydro-4,9:16, 21-dimetheno-1H, 13H-dibenzo[e,k]pyrrolo[3,4-h][1,4,13]oxadiazacyclohexadecene++ +-1,3(2H)-dione, inhibits the PKC beta I (IC50 = 4.7 nM) and PKC beta II (IC50 = 5.9 nM) isozymes and was 76- and 61-fold selective for inhibition of PKC beta I and PKC beta II in comparison to PKC alpha, respectively. The additional analogues described in the series are also selective inhibitors of PKC beta. LY333531 (1) exhibits ATP dependent competitive inhibition of PKC beta I and is selective for PKC in comparison to other ATP dependent kinases (protein kinase A, calcium calmodulin, caesin kinase, src tyrosine kinase). The cellular activity of the series was assessed using bovine retinal capillary endothelial cells. Retinal endothelial cell dysfunction has been implicated in the development of diabetic retinopathy. Plasminogen activator activity stimulated by a phorbol ester (4 beta-phorbol 12,13-dibutyrate) in endothelial cells was inhibited by the compounds in the series with ED50 values ranging from 7.5 to 0.21 microM. A comparison of the PKC isozyme and related ATP dependent kinase inhibition profiles is provided for the series and compared to the profile for staurosporine, a nonselective PKC inhibitor. The cellular activity of the series is compared with that of the kinase inhibitor staurosporine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.