Endothelial nitric oxide synthase (eNOS) is critical in the regulation of vascular function, and can generate both nitric oxide (NO) and superoxide (O2•−), which are key mediators of cellular signalling. In the presence of Ca2+/calmodulin, eNOS produces NO, endothelial-derived relaxing factor, from L-arginine (L-Arg) by means of electron transfer from NADPH through a flavin containing reductase domain to oxygen bound at the haem of an oxygenase domain, which also contains binding sites for tetrahydrobiopterin (BH4) and L-Arg1–3. In the absence of BH4, NO synthesis is abrogated and instead O2•− is generated4–7. While NOS dysfunction occurs in diseases with redox stress, BH4 repletion only partly restores NOS activity and NOS-dependent vasodilation7. This suggests that there is an as yet unidentified redox-regulated mechanism controlling NOS function. Protein thiols can undergo S-glutathionylation, a reversible protein modification involved in cellular signalling and adaptation8,9. Under oxidative stress, S-glutathionylation occurs through thiol–disulphide exchange with oxidized glutathione or reaction of oxidant-induced protein thiyl radicals with reduced glutathione10,11. Cysteine residues are critical for the maintenance of eNOS function12,13; we therefore speculated that oxidative stress could alter eNOS activity through S-glutathionylation. Here we show that S-glutathionylation of eNOS reversibly decreases NOS activity with an increase in O2•− generation primarily from the reductase, in which two highly conserved cysteine residues are identified as sites of S-glutathionylation and found to be critical for redox-regulation of eNOS function. We show that eNOS S-glutathionylation in endothelial cells, with loss of NO and gain of O2•− generation, is associated with impaired endothelium-dependent vasodilation. In hypertensive vessels, eNOS S-glutathionylation is increased with impaired endothelium-dependent vasodilation that is restored by thiol-specific reducing agents, which reverse this S-glutathionylation. Thus, S-glutathionylation of eNOS is a pivotal switch providing redox regulation of cellular signalling, endothelial function and vascular tone.
DNA methylation in the promoter of certain genes is associated with transcriptional silencing. Methylation affects gene expression directly by interfering with transcription factor binding and/or indirectly by recruiting histone deacetylases through methyl-DNA-binding proteins. In this study, we demonstrate that the human lung cancer cell line H719 lacks p53-dependent and -independent p21Cip1 expression. p53 response to treatment with gamma irradiation or etoposide is lost due to a mutation at codon 242 of p53 (C3W). Treatment with depsipeptide, an inhibitor of histone deacetylase, was unable to induce p53-independent p21Cip1 expression because the promoter of p21Cip1 in these cells is hypermethylated. Although a strong correlation between promoter methylation and gene silencing has been extensively demonstrated (5,24,35), the molecular mechanisms of this methylation-modulated gene inactivation remains unclear. Two hypotheses have been proposed to explain transcriptional inactivation from promoter methylation. One of them is based on the finding that methyl-CpG-binding proteins (MBPs), such as MeCP2, specifically bind to symmetrically methylated DNA through a methyl-CpG-binding domain (11,41). MBPs then recruit transcriptional repressors such as Sin3, NuRD, and histone deacetylases (HDACs) through its transcriptional-repression domain (25,32,54). Since Sin3 and HDACs are known transcriptional repressors (2, 50), methylated DNA may repress gene expression indirectly through MeCP2 and other MBPs. In addition, deacetylation of histones results in a net increase in positively charged lysines and arginines at the N-terminal tail of the histones (18, 21), thus inducing a tighter noncovalent linkage between the positively charged histones and the negatively charged DNA (3, 47). Consequently, transcription factors have difficulty accessing their DNA-binding sites (4, 29, 47), with a reduction or silencing of gene transcription. This hypothesis, based on the interaction between DNA methylation and histone acetylation status, has been extensively supported by accumulated experimental evidence (7,16,37,40). For example, trichostatin A (TSA), an inhibitor of HDAC, induces a robust reexpression of silenced genes when used with minimal doses of the demethylating agent, 5-aza-2Ј-deoxycytidine (5-azaCdR), although TSA or 5-aza-CdR alone do not lead to gene reexpression (7). Our previous data also show a link between histone acetylation status and DNA methylation, such that 5-aza-CdR significantly enhances acetylation of histones H3 and H4 induced by a HDAC inhibitor, depsipeptide. Related to this, depsipeptide-induced apoptosis is dramatically increased in cells pretreated with 5-aza-CdR (56). In addition, p19 INK4D expression is greatly enhanced when human lung cancer cells are treated with depsipeptide and 5-aza-CdR together compared to treatment with each agent alone (55). These studies support the notion that methylation and histone acetylation work cooperatively to influence gene expression and other biological processes.A...
Coronary vasodilation is impaired in the postischemic heart with a loss of endothelial nitric oxide synthase (eNOS) activity, but the mechanisms underlying ischemia-induced eNOS dysfunction are not understood. For nitric oxide (NO) synthesis, eNOS requires the redox-sensitive cofactor tetrahydrobiopterin (BH 4); however, the role of BH 4 in ischemia-induced endothelial dysfunction remains unknown. Therefore, isolated rat hearts were subjected to varying durations of ischemia, and the alterations in NOS-dependent vasodilation were measured and correlated with assays of eNOS activity and cardiac BH 4 concentrations. Ischemia timedependently decreased cardiac BH 4 content with 85, 95, or 97% irreversible degradation after 30, 45, or 60 min of ischemia, respectively. Paralleling the decreases in BH 4, reductions of eNOS activity were seen of 58, 86, or 92%, and NOS-derived superoxide production was greatly increased. Addition of 10 M BH4 enhanced eNOS activity in nonischemic hearts and partially restored activity after ischemia. It also suppressed NOS-derived superoxide production. Impaired coronary flow during postischemic reperfusion was improved by BH 4 infusion. Thus, BH4 depletion contributes to postischemic eNOS dysfunction, and BH 4 treatment is effective in partial restoration of endothelium-dependent coronary flow. Supplementation of BH 4 may therefore be an important therapeutic approach to reverse endothelial dysfunction in postischemic tissues.ischemia reperfusion injury ͉ nitric oxide ͉ nitric oxide synthase uncoupling ͉ superoxide ͉ vascular function N itric oxide synthase (NOS) converts L-arginine and O 2 to nitric oxide (NO) and L-citrulline. This enzymatic process consumes NADPH and requires Ca 2ϩ /calmodulin, flavin adenine dinucleotide, flavin mononucleotide, and tetrahydrobiopterin (BH 4 ) as NOS cofactors. Endothelial NO synthase (eNOS) contributes to the regulation of vasomotor tone and blood pressure by producing NO that activates soluble guanylate cyclase in vascular smooth muscle, resulting in vasorelaxation (1-3).Endothelial dysfunction is a prognostic marker of cardiovascular disease (4). It has been suggested that limited availability of BH 4 contributes to eNOS dysfunction in hypercholesterolemia, diabetes, atherosclerosis, hypertension, and heart failure (5-9). It was also observed previously that eNOS function is impaired in ischemic hearts (10). In vivo coronary artery occlusion triggers endothelial dysfunction and decreased eNOSdependent vasoreactivity, although reactivity is preserved to exogenous NO (11,12). Endothelial-dependent coronary vasoreactivity is impaired in hearts subjected to periods of global ischemia and reperfusion (10). Endothelium-dependent vasodilators induce a relatively high increase in coronary flow in control hearts or in those made ischemic for short times, but longer periods of ischemia result in an abrupt decline in vasodilatory response.In addition to impairing eNOS-mediated NO formation, BH 4 depletion may have additional detrimental effects in postischem...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.