Following the heme paradigm, it is often proposed that dioxygen activation by nonheme monoiron enzymes involves an iron(IV)=oxo intermediate that is responsible for the substrate oxidation step. Such a transient species has now been obtained from a synthetic complex with a nonheme macrocyclic ligand and characterized spectroscopically. Its high-resolution crystal structure reveals an iron-oxygen bond length of 1.646(3) angstroms, demonstrating that a terminal iron(IV)=oxo unit can exist in a nonporphyrin ligand environment and lending credence to proposed mechanisms of nonheme iron catalysis.
Nonheme oxoiron(IV) complexes of two pentadentate ligands, N4Py (N,N-bis(2-pyridylmethyl)-bis(2-pyridyl)methylamine) and Bn-tpen (N-benzyl-N,N',N'-tris(2-pyridylmethyl)-1,2-diaminoethane), have been generated and found to have spectroscopic properties similar to the closely related tetradentate TPA (tris(2-pyridylmethyl)amine) complex reported earlier. However, unlike the TPA complex, the pentadentate complexes have a considerable lifetime at room temperature. This greater thermal stability has allowed the hydroxylation of alkanes with C-H bonds as strong as 99.3 kcal/mol to be observed at room temperature. Furthermore, a large deuterium KIE value is found in the oxidation of ethylbenzene. These observations lend strong credence to postulated mechanisms of mononuclear nonheme iron enzymes that invoke the intermediacy of oxoiron(IV) species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.