Cellular hypoxia, characterizing tumors, ischemia, and inflammation induce recruitment of monocytes/macrophages, immobilize them at the hypoxic site, and alter their function. To migrate across the extracellular matrix and as part of their inflammatory functions, monocytes and macrophages secrete proteases, including matrix metalloproteinase-9 (MMP-9), whose expression is induced by proinflammatory cytokines [e.g., tumor necrosis factor alpha (TNF-alpha)]. We show that hypoxia (<0.3% O2 for 48 h) reduced the output of TNF-alpha-induced proMMP-9 by threefold (P < 0.01) in the U937 monocytic cell line and in primary human monocytes. TNF-alpha induced MMP-9 transcription by threefold, but no significant difference was observed in MMP-9 mRNA steady-state between normoxia and hypoxia, which inhibited the trafficking of proMMP-9 via secretory vesicles and increased the intracellular accumulation of proMMP-9 in the cells by 47% and 62% compared with normoxia (P < 0.05), as evaluated by zymography of cellular extracts and confocal microscopy, respectively. Secretion of proMMP-9 was reduced by the addition of cytochalazin B or nocodazole, which inhibits the polymerization of actin and tubulin fibers, or by the addition of the Rho kinase inhibitor Y27632, suggesting the involvement of the cytoskeleton and the Rho GTPases in the process of enzyme secretion. Furthermore, attachment of proMMP-9 to the cell membrane increased after hypoxia via its interactions with surface molecules such as CD44. In addition, the reduced migration of monocytes in hypoxia was shown to be mediated, at least partially, by secreted MMP-9. Thus, hypoxia post-translationally reduced the secreted amounts of proMMP-9 by using two mutually nonexclusive mechanisms: mostly, inhibition of cellular trafficking and to a lesser extent, attachment to the membrane.
Monocytes/macrophages in ischemic tissues are involved in inflammation and suppression of adaptive immunity via secretion of proinflammatory cytokines and reduced ability to trigger T cells, respectively. We subjected human mononuclear cells and mouse macrophages to hypoxia and reoxygenation, the main constituents of ischemia and reperfusion, and added lipopolysaccharide (LPS) to simulate bacterial translocation, which frequently accompanies ischemia. We monitored the secretion of tumor necrosis factor alpha (TNF-alpha) and the surface expression of human leukocyte antigen-DR and the costimulatory molecules CD80 and CD86 on monocytes/macrophages. Hypoxia selectively reduced the surface expression of CD80 (P<0.01), and synergistically with LPS, it enhanced TNF-alpha secretion (P<0.003). Reoxygenation reversed both phenomena. In the mouse macrophage cell line RAW 264.7, hypoxia reduced the surface expression of CD80 and increased its concentrations in the supernatants (P<0.01). Down-regulation of the mRNA coding for the membrane-anchored CD80 was observed, suggesting that hypoxia triggers alternative splicing to generate soluble CD80. Cumulatively, these results suggest that hypoxia simultaneously affects monocytes/macrophages to enhance inflammation and reduce their ability to initiate adaptive-immunity responses associated with ischemic injury.
Amebiasis, a global intestinal parasitic disease, is due to Entamoeba histolytica. This parasite, which feeds on bacteria in the large intestine of its human host, can trigger a strong inflammatory response upon invasion of the colonic mucosa. Whereas information about the mechanisms which are used by the parasite to cope with oxidative and nitrosative stresses during infection is available, knowledge about the contribution of bacteria to these mechanisms is lacking. In a recent study, we demonstrated that enteropathogenic Escherichia coli O55 protects E. histolytica against oxidative stress. Resin-assisted capture (RAC) of oxidized (OX) proteins coupled to mass spectrometry (OX-RAC) was used to investigate the oxidation status of cysteine residues in proteins present in E. histolytica trophozoites incubated with live or heat-killed E. coli O55 and then exposed to H2O2-mediated oxidative stress. We found that the redox proteome of E. histolytica exposed to heat-killed E. coli O55 is enriched with proteins involved in redox homeostasis, lipid metabolism, small molecule metabolism, carbohydrate derivative metabolism, and organonitrogen compound biosynthesis. In contrast, we found that proteins associated with redox homeostasis were the only OX-proteins that were enriched in E. histolytica trophozoites which were incubated with live E. coli O55. These data indicate that E. coli has a profound impact on the redox proteome of E. histolytica. Unexpectedly, some E. coli proteins were also co-identified with E. histolytica proteins by OX-RAC. We demonstrated that one of these proteins, E. coli malate dehydrogenase (EcMDH) and its product, oxaloacetate, are key elements of E. coli-mediated resistance of E. histolytica to oxidative stress and that oxaloacetate helps the parasite survive in the large intestine. We also provide evidence that the protective effect of oxaloacetate against oxidative stress extends to Caenorhabditis elegans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.