This investigation examined the effects of acute resistance exercise (RE), progressive resistance training (PRT), and age on the human skeletal muscle Transcriptome. Two cohorts of young and old adults [study A: 24 yr, 84 yr (n = 28); study B: 25 yr, 78 yr (n = 36)] were studied. Vastus lateralis biopsies were obtained pre- and 4 h post-RE in conjunction with the 1st and 36th (last) training session as part of a 12-wk PRT program in study A, whereas biopsies were obtained in the basal untrained state in study B. Additionally, the muscle fiber type specific (MHC I and MHC IIa) Transcriptome response to RE was examined in a subset of young and old women from study A. Transcriptome profiling was performed using HG U133 Plus 2.0 Arrays. The main findings were 1) there were 661 genes affected by RE during the 1st and 36th training bout that correlated with gains in muscle size and strength with PRT (termed the Transcriptome signature of resistance exercise adaptations); 2) the RE gene response was most pronounced in fast-twitch (MHC IIa) muscle fibers and provided additional insight into the skeletal muscle biology affected by RE; 3) skeletal muscle of young adults is more responsive to RE at the gene level compared with old adults and age also affected basal level skeletal muscle gene expression. These skeletal muscle Transcriptome findings provide further insight into the molecular basis of sarcopenia and the impact of resistance exercise at the mixed muscle and fiber type specific level.
The retinoic acid receptor-related orphan receptors ␣ and ␥ (ROR␣ (NR1F1) and ROR␥ (NR1F3)) are orphan nuclear receptors and perform critical roles in regulation of development, metabolism, and immune function. Cholesterol and cholesterol sulfate have been suggested to be ROR␣ ligands, but the physiological significance is unclear. To date, no endogenous ROR␥ ligands have been described. Here, we demonstrate that 7-oxygenated sterols function as high affinity ligands for both ROR␣ and ROR␥ by directly binding to their ligand-binding domains In the late 1980s, as the canonical domain structure and conserved sequence of members of the nuclear hormone receptor (NHR) 3 superfamily became apparent, several laboratories began to isolate additional members of this superfamily that had no identified ligands. Many of these so-called orphan receptors still have no identified ligands. The first member of the ROR subfamily of receptors (ROR␣) was identified in the early 1990s based on sequence similarities to the retinoic acid receptor and the retinoid X receptor, hence the name "retinoic acid receptor-related orphan receptor" (1, 2). The highly similar receptors, ROR and ROR␥, were identified soon after (3, 4).
The Cbfa1/Runx2 (referred to herein as Cbfa1) transcription factor has been shown to be essential for osteoblast differentiation and bone formation during embryogenesis. PTH given intermittently is a proven bone anabolic agent. Here, we investigated whether PTH regulates the expression and/or activity of Cbfa1 in osteoblastic cells and in a rat metatarsal organ culture assay. PTH was found to regulate Cbfa1 mRNA in the rat osteosarcoma cell line UMR106 in a concentration-dependent manner. The effect of PTH was mimicked by forskolin, an activator of adenylate cyclase leading to the protein kinase A pathway. PTH administered intermittently for 5 d in vivo was found to stimulate Cbfa1 protein in the rat proximal tibiae metaphysis. To demonstrate PTH regulation of Cbfa1 activity, a construct containing six tandem Cbfa1 binding elements fused to luciferase was shown to be rapidly stimulated in response to PTH. This stimulation preceded the effects on mRNA regulation and resulted from a protein kinase A-mediated increase in Cbfa1 activity. Finally, using a neonate rat metatarsal organ culture system, we demonstrated dose-dependent anabolic responsiveness to PTH and to Cbfa1 overexpression from an adenoviral construct. We further showed that Cbfa1 antisense oligonucleotides that blocked adenoviral Cbfa1-induced anabolic effects in this organ culture model also abolished the PTH-mediated anabolic increase. These findings suggest a requirement for Cbfa1 in mediating the anabolic effects of PTH. Thus, regulation of Cbfa1 expression or activity is an important mechanism by which PTH controls osteoblast function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.