The assembly of signaling nanoterritories at the T cell immunological synapse is controlled by the coordinated trafficking and fusion of specific vesicles containing the signaling molecules Lck, LAT, and TCRζ.
Transcytosis is a widespread pathway for apical targeting in epithelial cells. MAL2, an essential protein of the machinery for apical transcytosis, functions by shuttling in vesicular carriers between the apical zone and the cell periphery. We have identified INF2, an atypical formin with actin polymerization and depolymerization activities, which is a binding partner of MAL2. MAL2-positive vesicular carriers associate with short actin filaments during transcytosis in a process requiring INF2. INF2 binds Cdc42 in a GTP-loaded-dependent manner. Cdc42 and INF2 regulate MAL2 dynamics and are necessary for apical transcytosis and the formation of lateral lumens in hepatoma HepG2 cells. INF2 and MAL2 are also essential for the formation of the central lumen in organotypic cultures of epithelial MDCK cells. Our results reveal a functional mechanism whereby Cdc42, INF2, and MAL2 are sequentially ordered in a pathway dedicated to the regulation of transcytosis and lumen formation.
Post-translational farnesylation or geranylgeranylation at a C-terminal cysteine residue regulates localization and function of over 100 proteins, including the Ras isoforms, and is a therapeutic target in diseases including cancer and infection. Here we report global and selective profiling of prenylated proteins in living cells enabled by development of isoprenoid analogues YnF and YnGG in combination with quantitative chemical proteomics. Eighty prenylated proteins were identified in a single human cell line, 64 for the first time at endogenous abundance without metabolic perturbation. We further demonstrate that YnF and YnGG enable direct identification of post-translationally processed prenylated peptides, proteome-wide quantitative analysis of prenylation dynamics and alternative prenylation in response to four different prenyltransferase inhibitors, and quantification of defective Rab prenylation in a model of the retinal degenerative disease Choroideremia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.