Biosensors are molecular sensors that combine a biological recognition mechanism with a physical transduction technique. They provide a new class of inexpensive, portable instrument that permit sophisticated analytical measurements to be undertaken rapidly at decentralized locations. However, the adoption of biosensors for practical applications other than the measurement of blood glucose is currently limited by the expense, insensitivity and inflexibility of the available transduction methods. Here we describe the development of a biosensing technique in which the conductance of a population of molecular ion channels is switched by the recognition event. The approach mimics biological sensory functions and can be used with most types of receptor, including antibodies and nucleotides. The technique is very flexible and even in its simplest form it is sensitive to picomolar concentrations of proteins. The sensor is essentially an impedance element whose dimensions can readily be reduced to become an integral component of a microelectronic circuit. It may be used in a wide range of applications and in complex media, including blood. These uses might include cell typing, the detection of large proteins, viruses, antibodies, DNA, electrolytes, drugs, pesticides and other low-molecular-weight compounds.
Using novel synthetic lipids, a tethered bilayer membrane (tBLM) was formed onto a gold electrode such that a well-defined ionic reservoir exists between the gold surface and the bilayer membrane. Self-assembled monolayers of reservoir-forming lipids were first adsorbed onto the gold surface using gold−sulfur interactions, followed by the formation of the tBLM using the self-assembly properties of phosphatidylcholine-based lipids in aqueous solution. The properties of the tBLM were investigated by impedance spectroscopy. The capacitance of the tBLM indicated the formation of bilayer membranes of comparable thickness to solvent-free black (or bilayer) lipid membranes (BLM). The ionic sealing ability was comparable to those of classical BLMs. The function of the ionic reservoir was investigated using the potassium-specific ionophore valinomycin. Increasing the size of the reservoir by increasing the length of the hydrophilic region of the reservoir lipid or laterally spacing the reservoir lipid results in an improved ionic reservoir. Imposition of a dc bias voltage during the measurement of the impedance spectrum affected the conductivity of the tBLM. The conductivity and specificity of the valinomycin were comparable to those seen in a classical BLM.
We demonstrate that thin films consisting of cross-linked nanoparticle aggregates function as highly sensitive strain gauges. The sensors exploit the exponential dependence of the interparticle tunnel resistance on the particle separation. Their sensitivity (gauge factor) is two orders of magnitude higher than that of conventional metal foil gauges and rivals that of state-of-the-art semiconductor gauges. We describe the strain gauge behavior in a tunneling model that predicts the dependence of the gauge factor on several parameters, in particular, the nanoparticle size, the interparticle separation gap, and the conductance of the linker molecules.
A novel chemiresistor sensor for detection of organic analytes in high-conductivity aqueous electrolyte solution is reported. The chemiresistor sensor is based on thin films of gold nanoparticles capped with a 1-hexanethiol monolayer that is inkjet printed onto a microelectrode. In order for a change in nanoparticle film resistance to be measured, the electronic conduction must preferentially occur through the nanoparticle film rather than through the high-conductivity electrolyte solution. This was achieved by miniaturizing the chemiresistor device such that the double layer capacitance of the electrodes in contact with the electrolyte solution gives rise to a significantly larger impedance compared to the nanoparticle film resistance. This system was shown to be sensitive to simple organics dissolved in an aqueous electrolyte solution. The organic analytes, dissolved in the aqueous solution, partition into the hydrophobic nanoparticle film causing the nanoparticle film to swell, resulting in an increase in the low-frequency impedance of the sensor. An increase in the impedance, at 1 Hz, of the gold nanoparticle chemiresistor on exposure to toluene, dichloromethane, and ethanol dissolved in 1 M KCl solution was demonstrated with detection limits of 0.1, 10, and 3000 ppm, respectively. Titration curves over 3 orders of magnitude could be obtained for analytes such as toluene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.