Nanomedicines achieve tumor-targeted delivery mainly through enhanced permeability and retention (EPR) effect following intravenous (IV) administration. Unfortunately, the EPR effect is severely compromised in pancreatic cancer due to hypovascularity and dense desmoplastic stroma. Intraperitoneal (IP) administration may be an effective EPR-independent local delivery approach to target peritoneal tumors. Besides improved delivery, effective combination delivery strategies are needed to improve pancreatic cancer therapy by targeting both cancer cells and cellular interactions within the tumor stroma. Here, we described simple cholesterol-modified polymeric CXCR4 antagonist (PCX) nanoparticles (to block cancer-stroma interactions) for codelivery of anti-miR-210 (to inactivate stroma-producing pancreatic stellate cells (PSCs)) and siKRAS G12D (to kill pancreatic cancer cells). IP administration delivered the nanoparticles to an orthotopic syngeneic pancreatic tumors as a result of preferential localization to the tumors and metastases with disrupted mesothelium and effective tumor penetration. The local IP delivery resulted in nearly 15-fold higher tumor accumulation than delivery by IV injection. Through antagonism of CXCR4 and downregulation of miR-210/KRAS G12D , the triple-action nanoparticles favorably modulated desmoplastic tumor microenvironment via inactivating PSCs and promoting the infiltration of cytotoxic T cells. The combined therapy displayed improved therapeutic effect when compared with individual therapies as documented by the delayed tumor growth, depletion of stroma, reduction of immunosuppression, inhibition of metastasis, and prolonged survival. Overall, we present data that a local IP delivery of a miRNA/siRNA combination holds the potential to improve pancreatic cancer therapy.
Inflammatory bowel disease is a chronic inflammation of the gastrointestinal tract with poor understanding of its pathogenesis and no effective cure. The goal of this study was to evaluate the feasibility of orally administered non-degradable polymeric chloroquine (pCQ) to locally reduce colon inflammation. The pCQ was synthesized by radical copolymerization of N-(2-hydroxypropyl)methacrylamide with methacryloylated hydroxychloroquine (HCQ). The anti-inflammatory activity of orally administered pCQ versus HCQ was tested in a mouse model of colitis induced by Citrobacter rodentium (C. rodentium). Single-dose pharmacokinetic and biodistribution studies performed in the colitis model indicated negligible systemic absorption (p ≤ 0.001) and localization of pCQ in the gastrointestinal tract. A multi-dose therapeutic study demonstrated that the localized pCQ treatment resulted in significant reduction in the colon inflammation (p ≤ 0.05). Enhanced suppression of pro-inflammatory cytokines IL-6 (p ≤ 0.01) and IL1-β and opposing upregulation of IL-2 (p ≤ 0.05) recently reported to be involved in downstream anti-inflammatory events suggested that the anti-inflammatory effects of the pCQ are mediated by altering mucosal immune homeostasis. Overall, the reported findings demonstrate a potential of pCQ as a novel polymer therapeutic option in inflammatory bowel disease with the potential of local effects and minimized systemic toxicity.
Cholangiocarcinoma (CCA) is the second most common primary liver malignancy with extremely poor therapeutic outcome due to high drug resistance, widespread metastasis and lack of effective treatment options. CCA progression and metastasis are regulated by multiple biological factors including multiple miRNAs and chemokine receptor CXCR4. The goal of this study was to test if nanotherapeutic blockade of CXCR4 by polymeric CXCR4 antagonist (PCX) combined with inhibition of hypoxia-inducible miR-210 cooperatively enhances therapeutic efficacy in CCA through reducing invasiveness, inducing cell killing, and reversing drug resistance.Methods: We first tested the activity of PCX to inhibit migration of CCA cells. We then prepared PCX/anti-miRNA nanoparticles and analyzed their miRNA delivery efficacy and anticancer activity in vitro. Finally, in vivo biodistribution assay and anticancer activity study were performed in CCA tumor-bearing mice.Results: Our results show that PCX had a broad inhibitory effect on cell migration, effectively delivered anti-miR-210, and downregulated miR-210 expression in CCA cells. Combination PCX/anti-miR-210 nanoparticles showed cytotoxic activity towards CCA cells and reduced the number of cancer stem-like cells. The nanoparticles reversed hypoxia-induced drug resistance and sensitized CCA cells to standard gemcitabine and cisplatin combination treatment. Systemic intravenous treatment with the nanoparticles in a CCA xenograft model resulted in prominent combined antitumor activity.Conclusion: Our findings support PCX-based nanoparticles as a promising delivery platform of therapeutic miRNA in combination CCA therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.