The recent discovery of mutations in metabolic enzymes has rekindled interest in harnessing the altered metabolism of cancer cells for cancer therapy. One potential drug target is isocitrate dehydrogenase 1 (IDH1), which is mutated in multiple human cancers. Here, we examine the role of mutant IDH1 in fully transformed cells with endogenous IDH1 mutations. A selective R132H-IDH1 inhibitor (AGI-5198) identified through a high-throughput screen blocked, in a dose-dependent manner, the ability of the mutant enzyme (mIDH1) to produce R-2-hydroxyglutarate (R-2HG). Under conditions of near-complete R-2HG inhibition, the mIDH1 inhibitor induced demethylation of histone H3K9me3 and expression of genes associated with gliogenic differentiation. Blockade of mIDH1 impaired the growth of IDH1-mutant—but not IDH1–wild-type—glioma cells without appreciable changes in genome-wide DNA methylation. These data suggest that mIDH1 may promote glioma growth through mechanisms beyond its well-characterized epigenetic effects.
Somatic gain-of-function mutations in isocitrate dehydrogenases (IDH) 1 and 2 are found in multiple hematologic and solid tumors, leading to accumulation of the oncometabolite (R)-2-hydroxyglutarate (2HG). 2HG competitively inhibits α-ketoglutarate-dependent dioxygenases, including histone demethylases and methylcytosine dioxygenases of the TET family, causing epigenetic dysregulation and a block in cellular differentiation. In vitro studies have provided proof of concept for mutant IDH inhibition as a therapeutic approach. We report the discovery and characterization of AG-221, an orally available, selective, potent inhibitor of the mutant IDH2 enzyme. AG-221 suppressed 2HG production and induced cellular differentiation in primary human IDH2 mutation-positive acute myeloid leukemia (AML) cells ex vivo and in xenograft mouse models. AG-221 also provided a statistically significant survival benefit in an aggressive IDH2 R140Q -mutant AML xenograft mouse model. These findings supported initiation of the ongoing clinical trials of AG-221 in patients with IDH2 mutation-positive advanced hematologic malignancies.
SIGNIFICANCE:Mutations in IDH1/2 are identified in approximately 20% of patients with AML and contribute to leukemia via a block in hematopoietic cell differentiation. We have shown that the targeted inhibitor AG-221 suppresses the mutant IDH2 enzyme in multiple preclinical models and induces differentiation of malignant blasts, supporting its clinical development. Cancer Discov; 7(5); 478-93.
Somatic point mutations
at a key arginine residue (R132) within
the active site of the metabolic enzyme isocitrate dehydrogenase 1
(IDH1) confer a novel gain of function in cancer cells, resulting
in the production of d-2-hydroxyglutarate (2-HG), an oncometabolite.
Elevated 2-HG levels are implicated in epigenetic alterations and
impaired cellular differentiation. IDH1 mutations have been described
in an array of hematologic malignancies and solid tumors. Here, we
report the discovery of AG-120 (ivosidenib), an inhibitor of the IDH1
mutant enzyme that exhibits profound 2-HG lowering in tumor models
and the ability to effect differentiation of primary patient AML samples
ex vivo. Preliminary data from phase 1 clinical trials enrolling patients
with cancers harboring an IDH1 mutation indicate that AG-120 has an
acceptable safety profile and clinical activity.
Purpose: Small-molecule inhibitors of Aurora A (AAK) and B (ABK) kinases, which play important roles in mitosis, are currently being pursued in oncology clinical trials. We developed three novel assays to quantitatively measure biomarkers of AAK inhibition in vivo. Here, we describe preclinical characterization of alisertib (MLN8237), a selective AAK inhibitor, incorporating these novel pharmacodynamic assays.Experimental Design: We investigated the selectivity of alisertib for AAK and ABK and studied the antitumor and antiproliferative activity of alisertib in vitro and in vivo. Novel assays were used to assess chromosome alignment and mitotic spindle bipolarity in human tumor xenografts using immunofluorescent detection of DNA and alpha-tubulin, respectively. In addition, 18F-3 0 -fluoro-3 0 -deoxy-L-thymidine positron emission tomography (FLT-PET) was used to noninvasively measure effects of alisertib on in vivo tumor cell proliferation. Results: Alisertib inhibited AAK over ABK with a selectivity of more than 200-fold in cells and produced a dose-dependent decrease in bipolar and aligned chromosomes in the HCT-116 xenograft model, a phenotype consistent with AAK inhibition. Alisertib inhibited proliferation of human tumor cell lines in vitro and produced tumor growth inhibition in solid tumor xenograft models and regressions in in vivo lymphoma models. In addition, a dose of alisertib that caused tumor stasis, as measured by volume, resulted in a decrease in FLT uptake, suggesting that noninvasive imaging could provide value over traditional measurements of response.Conclusions: Alisertib is a selective and potent inhibitor of AAK. The novel methods of measuring Aurora A pathway inhibition and application of tumor imaging described here may be valuable for clinical evaluation of small-molecule inhibitors. Clin Cancer Res; 17(24); 7614-24. Ó2011 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.