Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17–29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD and major depressive disorder (0.32 ± 0.07 s.e.), low between schizophrenia and ASD (0.16 ± 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn’s disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.
Smoking is a leading global cause of disease and mortality1. We performed a genomewide meta-analytic association study of smoking-related behavioral traits in a total sample of 41,150 individuals drawn from 20 disease, population, and control cohorts. Our analysis confirmed an effect on smoking quantity (SQ) at a locus on 15q25 (P=9.45e-19) that includes three genes encoding neuronal nicotinic acetylcholine receptor subunits (CHRNA5, CHRNA3, CHRNB4). We used data from the 1000 Genomes project to investigate the region using imputation, which allowed analysis of virtually all common variants in the region and offered a five-fold increase in coverage over the HapMap. This increased the spectrum of potentially causal single nucleotide polymorphisms (SNPs), which included a novel SNP that showed the highest significance, rs55853698, located within the promoter region of CHRNA5. Conditional analysis also identified a secondary locus (rs6495308) in CHRNA3.
Prior genome-wide association studies (GWAS) of major depressive disorder (MDD) have met with limited success. We sought to increase statistical power to detect disease loci by conducting a GWAS mega-analysis for MDD. In the MDD discovery phase, we analyzed more than 1.2 million autosomal and X chromosome single-nucleotide polymorphisms (SNPs) in 18 759 independent and unrelated subjects of recent European ancestry (9240 MDD cases and 9519 controls). In the MDD replication phase, we evaluated 554 SNPs in independent samples (6783 MDD cases and 50 695 controls). We also conducted a cross-disorder meta-analysis using 819 autosomal SNPs with P< 0.0001 for either MDD or the Psychiatric GWAS Consortium bipolar disorder (BIP) mega-analysis (9238 MDD cases/8039 controls and 6998 BIP cases/7775 controls). No SNPs achieved genome-wide significance in the MDD discovery phase, the MDD replication phase or in pre-planned secondary analyses (by sex, recurrent MDD, recurrent early-onset MDD, age of onset, pre-pubertal onset MDD or typical-like MDD from a latent class analyses of the MDD criteria). In the MDD-bipolar cross-disorder analysis, 15 SNPs exceeded genome-wide significance (P<5×10−8), and all were in a 248 kb interval of high LD on 3p21.1 (chr3:52 425 083–53 822 102, minimum P= 5.9×10−9 at rs2535629). Although this is the largest genome-wide analysis of MDD yet conducted, its high prevalence means that the sample is still underpowered to detect genetic effects typical for complex traits. Therefore, we were unable to identify robust and replicable findings. We discuss what this means for genetic research for MDD. The 3p21.1 MDD-BIP finding should be interpreted with caution as the most significant SNP did not replicate in MDD samples, and genotyping in independent samples will be needed to resolve its status.
Charcot-Marie-Tooth disease type 2D (CMT2D) and distal spinal muscular atrophy type V (dSMA-V) are axonal peripheral neuropathies inherited in an autosomal dominant fashion. Our previous genetic and physical mapping efforts localized the responsible gene(s) to a well-defined region on human chromosome 7p. Here, we report the identification of four disease-associated missense mutations in the glycyl tRNA synthetase gene in families with CMT2D and dSMA-V. This is the first example of an aminoacyl tRNA synthetase being implicated in a human genetic disease, which makes genes that encode these enzymes relevant candidates for other inherited neuropathies and motor neuron diseases. Charcot-Marie-Tooth (CMT) disease constitutes a heterogeneous group of peripheral neuropathies estimated to affect 1 in 2,500 individuals (Skre 1974). The clinical features of CMT include muscular weakness and atrophy in the distal extremities, steppage gait, pes cavus, absent or diminished deep-tendon reflexes, and impaired sensation (Murakami et al. 1996). Through the measurement of motor nerve conductance velocities (MNCVs), CMT can be subdivided into two classes (Dyck and Lambert 1968). In CMT1, patients exhibit decreased MNCVs with demyelinating axons. In CMT2, patients exhibit normal MNCVs and no demyelination but have decreased amplitudes of evoked motor and sensory nerve responses. To date, six subtypes of CMT2 have been reported (CMT2A-F), with the genes responsible for
Prions are proteins that adopt alternative conformations, which become self-propagating. Increasing evidence argues that prions feature in the synucleinopathies that include Parkinson's disease, Lewy body dementia, and multiple system atrophy (MSA). Although TgM83 +/+ mice homozygous for a mutant A53T α-synuclein transgene begin developing CNS dysfunction spontaneously at ∼10 mo of age, uninoculated TgM83 +/− mice (hemizygous for the transgene) remain healthy. To determine whether MSA brains contain α-synuclein prions, we inoculated the TgM83 +/− mice with brain homogenates from two pathologically confirmed MSA cases. Inoculated TgM83 +/− mice developed progressive signs of neurologic disease with an incubation period of ∼100 d, whereas the same mice inoculated with brain homogenates from spontaneously ill TgM83 +/+ mice developed neurologic dysfunction in ∼210 d. Brains of MSA-inoculated mice exhibited prominent astrocytic gliosis and microglial activation as well as widespread deposits of phosphorylated α-synuclein that were proteinase K sensitive, detergent insoluble, and formic acid extractable. Our results provide compelling evidence that α-synuclein aggregates formed in the brains of MSA patients are transmissible and, as such, are prions. The MSA prion represents a unique human pathogen that is lethal upon transmission to Tg mice and as such, is reminiscent of the prion causing kuru, which was transmitted to chimpanzees nearly 5 decades ago.neurodegeneration | bioluminescence imaging | seeding | proteinopathies
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.