The 22q11.2 deletion (22q11DS) is a common chromosomal microdeletion and a potent risk factor for psychotic illness. Prior studies reported widespread cortical changes in 22q11DS, but were generally underpowered to characterize neuroanatomic abnormalities associated with psychosis in 22q11DS, and/or neuroanatomic effects of variability in deletion size. To address these issues, we developed the ENIGMA (Enhancing Neuro Imaging Genetics Through Meta-Analysis) 22q11.2 Working Group, representing the largest analysis of brain structural alterations in 22q11DS to date. Imaging data was collected from 10 centers worldwide, including 474 subjects with 22q11DS (age=18.2±8.6; 46.9% female) and 315 typically-developing, matched controls (age=18.0±9.2; 45.9% female). Compared to controls, 22q11DS individuals showed thicker cortical gray matter overall (left/right hemispheres: Cohen’s d=0.61/0.65), but focal thickness reduction in temporal and cingulate cortex. Cortical surface area (SA), however, showed pervasive reductions in 22q11DS (left/right hemispheres: d=−1.01/−1.02). 22q11DS cases vs. controls were classified with 93.8% accuracy based on these neuroanatomic patterns. Comparison of 22q11DS-psychosis to idiopathic schizophrenia (ENIGMA-Schizophrenia Working Group) revealed significant convergence of affected brain regions, particularly in fronto-temporal cortex. Finally, cortical SA was significantly greater in 22q11DS cases with smaller 1.5 Mb deletions, relative to those with typical 3Mb deletions. We found a robust neuroanatomic signature of 22q11DS, and the first evidence that deletion size impacts brain structure. Psychotic illness in this highly penetrant deletion was associated with similar neuroanatomic abnormalities to idiopathic schizophrenia. These consistent cross-site findings highlight the homogeneity of this single genetic etiology, and support the suitability of 22q11DS as a biological model of schizophrenia.
The pathophysiology of auditory verbal hallucinations (AVH) is largely unknown. Several functional imaging studies have measured cerebral activation during these hallucinations, but sample sizes were relatively small (one to eight subjects) and findings inconsistent. In this study cerebral activation was measured using fMRI in 24 psychotic patients while they experienced AVH in the scanner and, in another session, while they silently generated words. All patients were right handed and diagnosed with schizophrenia, schizo-affective disorder or psychotic disorder not otherwise specified. Group analysis for AVH revealed activation in the right homologue of Broca's area, bilateral insula, bilateral supramarginal gyri and right superior temporal gyrus. Broca's area and left superior temporal gyrus were not activated. Group analysis for word generation in these patients yielded activation in Broca's and Wernicke's areas and to a lesser degree their right-sided homologues, bilateral insula and anterior cingulate gyri. Lateralization of activity during AVH was not correlated with language lateralization, but rather with the degree to which the content of the hallucinations had a negative emotional valence. The main difference between cerebral activity during AVH and activity during normal inner speech appears to be the lateralization. The predominant engagement of the right inferior frontal area during AVH may be related to the typical low semantic complexity and negative emotional content.
Background No objective diagnostic biomarkers or laboratory tests have yet been developed for psychotic illness. Magnetic resonance imaging (MRI) studies consistently find significant abnormalities in multiple brain structures in psychotic patients relative to healthy control subjects, but these abnormalities show substantial overlap with anatomic variation that is in the normal range and therefore nondiagnostic. Recently, efforts have been made to discriminate psychotic patients from healthy individuals using machine-learning-based pattern classification methods on MRI data. Methods Three-dimensional cortical gray matter density (GMD) maps were generated for 36 patients with recent-onset psychosis and 36 sex- and age-matched control subjects using a cortical pattern matching method. Between-group differences in GMD were evaluated. Second, the sparse multinomial logistic regression classifier included in the Multivariate Pattern Analysis in Python machine-learning package was applied to the cortical GMD maps to discriminate psychotic patients from control subjects. Results Patients showed significantly lower GMD, particularly in prefrontal, cingulate, and lateral temporal brain regions. Pattern classification analysis achieved 86.1% accuracy in discriminating patients from controls using leave-one-out cross-validation. Conclusions These results suggest that even at the early stage of illness, psychotic patients present distinct patterns of regional cortical gray matter changes that can be discriminated from the normal pattern. These findings indicate that we can detect complex patterns of brain abnormality in early stages of psychotic illness, which has critical implications for early identification and intervention in individuals at ultra-high risk for developing psychosis/schizophrenia.
Schizophrenia occurs in about one in four individuals with 22q11.2 deletion syndrome (22q11.2DS). The aim of this International Brain and Behavior 22q11.2DS Consortium (IBBC) study was to identify genetic factors that contribute to schizophrenia, in addition to the ~20-fold increased risk conveyed by the 22q11.2 deletion. Using whole-genome sequencing data from 519 unrelated individuals with 22q11.2DS, we conducted genome-wide comparisons of common and rare variants between those with schizophrenia and those with no psychotic disorder at age ≥25 years. Available microarray data enabled direct comparison of polygenic risk for schizophrenia between 22q11.2DS and independent population samples with no 22q11.2 deletion, with and without schizophrenia (total n=35,182). Polygenic risk for schizophrenia within 22q11.2DS was significantly greater for those with schizophrenia (p adj =6.73x10-6). Novel reciprocal case-control comparisons between the 22q11.2DS and population-based cohorts showed that polygenic risk score was significantly greater in individuals with psychotic illness, regardless of the presence of the 22q11.2 deletion. Within the 22q11.2DS cohort, results of gene-set analyses showed some support for rare variants affecting synaptic genes. No common or rare variants within the 22q11.2 deletion region were significantly associated with schizophrenia. These findings suggest that in addition to conferring a greatly increased risk to schizophrenia, the risk is higher when the 22q11.2 deletion and common polygenic risk factors that contribute to schizophrenia in the general population are both present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.