Background & Aims Nearly 20% of the global cancer burden can be linked to infectious agents. Fusobacterium nucleatum promotes tumor formation by epithelial cells via unclear mechanisms. We aimed to identify microRNAs (miRNAs) induced by F nucleatum and evaluate their ability to promote colorectal carcinogenesis in mice. Methods Colorectal cancer (CRC) cell lines were incubated with F nucleatum or control reagents and analyzed in proliferation and would healing assays. HCT116, HT29, LoVo, and SW480 CRC cell lines were incubated with F nucleatum or phosphate buffer saline (PBS control) and analyzed for miRNA expression patterns and in chromatin immunoprecipitation assays. Cells were incubated with miRNAs mimics, control sequences, or small interfering (si) RNAs; expression of reporter constructs was measured in luciferase assays. CRC cells were incubated with F nucleatum or PBS and injected into BALB/C nude mice; growth of xenograft tumors was measured. C57BL APCmin/+, C57BL miR21a−/−, and C57BL mice with full-length miR21a (controls) were given F nucleatum by gavage; some mice were given azoxymethane (AOM) and dextran sodium sulfate (DSS) to induce colitis and colon tumors. Intestinal tissues were collected and tumors were counted. Serum samples from mice were analyzed for cytokine levels by ELISAs. We performed in situ hybridization analyses to detect enrichment of F nucleatum in CRC cells. F nucleatum DNA in 90 tumor and matched non-tumor tissues from patients in China were explored for the expression correlation analysis; levels in 125 tumor tissues from patients in Japan were compared with their survival times. Results F nucleatum increased proliferation and invasive activities of CRC cell lines, compared with control cells. CRC cell lines infected with F nucleatum formed larger tumors, more rapidly, in nude mice than uninfected cells. APCmin/+ mice gavaged with F nucleatum developed significantly more colorectal tumors than mice given PBS and had shorter survival times. We found several inflammatory factors to be significantly increased in serum from mice given F nucleatum (interleukin 17F [IL17F], IL21, IL22, and MIP3A). We found 50 miRNAs to be significantly upregulated and 52 miRNAs to be significantly downregulated in CRCs incubated with F nucleatum vs PBS; levels of miR21 increased by the greatest amount (more than 4-fold). Inhibitors of miR21 prevented F nucleatum from inducing cell proliferation and invasion in culture. miR21a−/− mice had a later appearance of fecal blood and diarrhea after administration of AOM and DSS, and had longer survival times, compared with control mice. The colorectum of miR21a−/− mice had fewer tumors, of smaller size, and the miR21a−/− mice survived longer than control mice. We found RASA1, which encodes a RAS GTPase, to be one of the target genes consistently downregulated in cells that overexpressed miR21 and upregulated in cells exposed to miR21 inhibitors. Infection of cells with F nucleatum increased expression of miR21 by activating TLR4 signaling to MYD88, leadi...
This study was designed to mainly evaluate the anti-infective effects of perioperative probiotic treatment in patients receiving confined colorectal cancer (CRC) respective surgery. From November 2011 to September 2012, a total of 60 patients diagnosed with CRC were randomly assigned to receive probiotic (n = 30) or placebo (n = 30) treatment. The operative and post-operative clinical results including intestinal cleanliness, days to first - flatus, defecation, fluid diet, solid diet, duration of pyrexia, average heart rate, length of intraperitoneal drainage, length of antibiotic therapy, blood index changes, rate of infectious and non-infectious complications, postoperative hospital stay, and mortality were investigated. The patient demographics were not significantly different (p > 0.05) between the probiotic treated and the placebo groups. The days to first flatus (3.63 versus 3.27, p = 0.0274) and the days to first defecation (4.53 versus 3.87, p = 0.0268) were significantly improved in the probiotic treated patients. The incidence of diarrhea was significantly lower (p = 0.0352) in probiotics group (26.67%, 8/30) compared to the placebo group (53.33%, 16/30). There were no statistical differences (p > 0.05) in other infectious and non-infectious complication rates including wound infection, pneumonia, urinary tract infection, anastomotic leakage, and abdominal distension. In conclusion, for those patients undergoing confined CRC resection, perioperative probiotic administration significantly influenced the recovery of bowel function, and such improvement may be of important clinical significance in reducing the short-term infectious complications such as bacteremia.
Because patients with colorectal cancer (CRC) are usually diagnosed at an advanced stage and current serum tumor markers have limited diagnostic efficacy, there is an urgent need to identify reliable diagnostic biomarkers. To better define the diagnostic potential of microRNAs (miRNAs) for CRC, we performed a comprehensive evaluation of reported circulating CRC miRNA markers. After a systematic literature review, we selected 30 candidate miRNAs and used quantitative real-time polymerase chain reaction to examine their expression in a training cohort of 120 plasma samples (CRC vs healthy controls (HC) = 60:60). Expression data was confirmed in a validation cohort of 160 plasma samples (CRC vs HC = 80:80). We ultimately identified 5 dysregulated circulating miRNAs (miR-15b, miR-17, miR-21, miR-26b, and miR-145), of which miR-21 and miR-26b proved to have the best diagnostic performance in the training and validation cohorts, respectively. Based on these results, we propose a novel blood-based diagnostic model, integrating 5 CRC-related miRNAs and serum carcinoembryonic antigen (CEA), which provides better diagnostic performance than the combined 5 miRNAs, CEA alone, or any single miRNA. We propose that the novel CRC diagnostic model presented here will be useful for overcoming the limitations faced by current non-invasive diagnostic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.