The low immunogenicity, insufficient infiltration of T lymphocytes, and dismal response to immune checkpoint blockade therapy pose major difficulties in immunotherapy of pancreatic cancer. Photoimmunotherapy by photodynamic therapy (PDT) can induce an antitumor immune response by triggering immunogenic cell death in the tumor cells. Notwithstanding, PDT‐driven oxygen consumption and microvascular damage can further aggravate hypoxia to exaggerates glycolysis, leading to lactate accumulation and immunosuppressive tumor microenvironment. Herein, a supramolecular prodrug nanoplatform codelivering a photosensitizer and a prodrug of bromodomain‐containing protein 4 inhibitor (BRD4i) JQ1 for combinatory photoimmunotherapy of pancreatic cancer are demonstrated. The nanoparticles are fabricated by host–guest complexation between cyclodextrin‐grafted hyaluronic acid (HA‐CD) and adamantine‐conjugated heterodimers of pyropheophorbide a (PPa) and JQ1, respectively. HA can achieve active tumor targeting by recognizing highly expressed CD44 on the surface of pancreatic tumors. PPa‐mediated PDT can enhance the immunogenicity of the tumor cells and promote intratumoral infiltration of the cytotoxic T lymphocytes. Meanwhile, JQ1 combats PDT‐mediated immune evasion through inhibiting expression of c‐Myc and PD‐L1, which are key regulators of tumor glycolysis and immune evasion. Collectively, this study presents a novel strategy to enhance photoimmunotherapy of the pancreatic cancer by provoking T cells activation and overcoming adaptive immune resistance.
Transmembrane-4-L-six-family-1(TM4SF1), a four-transmembrane L6 family member, is highly expressed in various pancreatic cancer cell lines and promotes cancer cells metastasis. However, the TM4SF1-associated signaling network in metastasis remains unknown. In the present study, we found that TM4SF1 affected the formation and function of invadopodia. Silencing of TM4SF1 reduced the expression of DDR1 significantly in PANC-1 and AsPC-1 cells. Through double fluorescence immuno-staining and Co-immunoprecipitation, we also found that TM4SF1 colocalized with DDR1 and had an interaction with DDR1. In addition, upregulating the expression of DDR1 rescued the inhibitory effects of cell migration and invasion, the expression of MMP2 and MMP9 and the formation and function of invadopodia when TM4SF1 silenced. In pancreatic cancer tissues, qRT-PCR and scatter plots analysis further determined that TM4SF1 had a correlation with DDR1. Collectively, our study provides a novel regulatory pathway involving TM4SF1, DDR1, MMP2 and MMP9, which promotes the formation and function of invadopodia to support cell migration and invasion in pancreatic cancer.
Background & Aims: It has recently been reported that thymosin beta-4 (Tβ4) has anti-fibrogenic effects in human hepatic stellate cells (HSCs) in vitro, but the mechanisms underlying these effects remain unclear. The aim of this study was to investigate the roles of Tβ4 in the proliferation, migration, and activation of HSCs. Methods: Enzyme-linked immunosorbent assays (ELISA), immunohistochemistry, and western blot assays were utilized to determine the expression levels of Tβ4 in serum, liver tissues, and LX-2 cells. Tβ4 was depleted in LX-2 cells using small interfering RNAs (siRNAs). Cell proliferation was analyzed using cell counting kit-8 (CCK-8) viability assays, and cell migration was investigated using wound-healing and transwell migration assays. Results: The expression of Tβ4 was significantly reduced during the progression of liver fibrosis. The depletion of Tβ4 significantly promoted the proliferation and migration of LX-2 cells via the activation of the PI3K/Akt signaling pathway. The pro-migratory and pro-proliferative effects of Tβ4 depletion in LX-2 cells can be counteracted by treatment with the Akt inhibitor MK-2206. In addition, Tβ4 depletion was also associated with the activation of HSCs via the enhanced expression of α-smooth muscle actin (α-SMA) and vimentin. Conclusions: Our results suggest that Tβ4 participates in liver fibrosis by inhibiting the migration, proliferation, and activation of HSCs and that Tβ4 may be an effective target in the treatment of liver fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.