Glioma is one of the primary malignant brain tumours in adults, with a poor prognosis. Pharmacological reagents targeting glioma are limited to achieve the desired therapeutic effect due to the presence of blood-brain barrier (BBB). Effectively crossing the BBB and specifically targeting to the brain tumour are the major challenge for the glioma treatments. Here, we demonstrate that the well-defined small extracellular vesicles (sEVs) with dual-targeting drug delivery and cell-penetrating functions, modified by Angiopep-2 and trans-activator of transcription peptides, enable efficient and specific chemotherapy for glioma. The high efficiency of engineered sEVs in targeting BBB and glioma was assessed in both monolayer culture cells and BBB model in vitro, respectively. The observed high targeting efficiency was re-validated in subcutaneous tumour and orthotopic glioma mice models. After loading the doxorubicin into dual-modified functional sEVs, this specific dual-targeting delivery system could cross the BBB, reach the glioma, and penetrate the tumour. Such a mode of drug delivery significantly improved more than 2-fold survival time of glioma mice with very few side effects. In conclusion, utilization of the dualmodified sEVs represents a unique and efficient strategy for drug delivery, holding great promise for the treatments of central nervous system diseases.
K E Y WO R D SAngiopep-2, blood-brain barrier, dual-targeting, glioma, small extracellular vesicles, TAT
Electrical stimulation (ES) offers significant advantages in modulating the behavior of stem cells on conductive scaffolds for neural tissue engineering. However, it is necessary to realize wireless ES to avoid the use of external wires in tissues. Thus, herein, a strategy is reported to develop a stem cell scaffold that allows wireless ES. A conductive annular graphene substrate is designed and grown by chemical vapor deposition; this substrate is used as a secondary coil to achieve wireless ES via electromagnetic induction in the presence of a primary coil. The substrate shows excellent biocompatibility for the culture of neural stem cells (NSCs). The results indicate that the applied wireless ES enhances neuronal differentiation, facilitates the formation of neurites, and does not substantially affect the viability and stemness maintenance of NSCs. Collectively, this system provides a strategy for achieving synergy between wireless ES and conductive scaffolds for neural regenerative medicine, which can be further utilized for the regeneration of other tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.