We describe the development of multifunctional nanoparticle probes based on semiconductor quantum dots (QDs) for cancer targeting and imaging in living animals. The structural design involves encapsulating luminescent QDs with an ABC triblock copolymer and linking this amphiphilic polymer to tumor-targeting ligands and drug-delivery functionalities. In vivo targeting studies of human prostate cancer growing in nude mice indicate that the QD probes accumulate at tumors both by the enhanced permeability and retention of tumor sites and by antibody binding to cancer-specific cell surface biomarkers. Using both subcutaneous injection of QD-tagged cancer cells and systemic injection of multifunctional QD probes, we have achieved sensitive and multicolor fluorescence imaging of cancer cells under in vivo conditions. We have also integrated a whole-body macro-illumination system with wavelength-resolved spectral imaging for efficient background removal and precise delineation of weak spectral signatures. These results raise new possibilities for ultrasensitive and multiplexed imaging of molecular targets in vivo.
Bioconjugated quantum dots (QDs) provide a new class of biological labels for evaluating biomolecular signatures (biomarkers) on intact cells and tissue specimens. In particular, the use of multicolor QD probes in immunohistochemistry is considered one of the most important and clinically relevant applications. At present, however, clinical applications of QD-based immunohistochemistry have achieved only limited success. A major bottleneck is the lack of robust protocols to define the key parameters and steps. Here, we describe our recent experience, preliminary results and detailed protocols for QD-antibody conjugation, tissue specimen preparation, multicolor QD staining, image processing and biomarker quantification. The results demonstrate that bioconjugated QDs can be used for multiplexed profiling of molecular biomarkers, and ultimately for correlation with disease progression and response to therapy. In general, QD bioconjugation is completed within 1 day, and multiplexed molecular profiling takes 1-3 days depending on the number of biomarkers and QD probes used.
Prostate cancer cells release atypically large extracellular vesicles (EVs), termed large oncosomes, which may play a role in the tumor microenvironment by transporting bioactive molecules across tissue spaces and through the blood stream. In this study, we applied a novel method for selective isolation of large oncosomes applicable to human platelet-poor plasma, where the presence of caveolin-1-positive large oncosomes identified patients with metastatic disease. This procedure was also used to validate results of a miRNA array performed on heterogeneous populations of EVs isolated from tumorigenic RWPE-2 prostate cells and from isogenic non-tumorigenic RWPE-1 cells. The results showed that distinct classes of miRNAs are expressed at higher levels in EVs derived from the tumorigenic cells in comparison to their non-tumorigenic counterpart. Large oncosomes enhanced migration of cancer-associated fibroblasts (CAFs), an effect that was increased by miR-1227, a miRNA abundant in large oncosomes produced by RWPE-2 cells. Our findings suggest that large oncosomes in the circulation report metastatic disease in patients with prostate cancer, and that this class of EV harbors functional molecules that may play a role in conditioning the tumor microenvironment.
Tumor-stromal interaction is a dynamic process that promotes tumor growth and metastasis via cell-cell interaction and extracellular vesicles. Recent studies demonstrate that stromal fibroblast-derived molecular signatures can be used to predict disease progression and drug resistance. To identify the epigenetic role of stromal noncoding RNAs in tumor-stromal interactions in the tumor microenvironment, we performed microRNA profiling of patient cancer-associated prostate stromal fibroblasts isolated by laser capture dissection microscopy and in bone-associated stromal models. We found specific upregulation of miR-409-3p and miR-409-5p located within the embryonically and developmentally regulated DLK1-DIO3 (delta-like 1 homolog-deiodinase, iodothyronine 3) cluster on human chromosome 14. The findings in cell lines were further validated in human prostate cancer tissues. Strikingly, ectopic expression of miR-409 in normal prostate fibroblasts conferred a cancer-associated stroma-like phenotype and led to the release of miR-409 via extracellular vesicles to promote tumor induction and epithelial-to-mesenchymal transition in vitro and in vivo. miR-409 promoted tumorigenesis through repression of tumor suppressor genes such as Ras suppressor 1 and stromal antigen 2. Thus, stromal fibroblasts derived miR-409-induced tumorigenesis, epithelial-to-mesenchymal transition and stemness of the epithelial cancer cells in vivo. Therefore, miR-409 appears to be an attractive therapeutic target to block the vicious cycle of tumor-stromal interactions that plagues prostate cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.