BackgroundBlood flukes of the genus Schistosoma cause schistosomiasis, a parasitic disease that infects over 240 million people worldwide, and for which there is a need to identify new targets for chemotherapeutic interventions. Our research is focused on Schistosoma mansoni prolyl oligopeptidase (SmPOP) from the serine peptidase family S9, which has not been investigated in detail in trematodes.Methodology/Principal FindingsWe demonstrate that SmPOP is expressed in adult worms and schistosomula in an enzymatically active form. By immunofluorescence microscopy, SmPOP is localized in the tegument and parenchyma of both developmental stages. Recombinant SmPOP was produced in Escherichia coli and its active site specificity investigated using synthetic substrate and inhibitor libraries, and by homology modeling. SmPOP is a true oligopeptidase that hydrolyzes peptide (but not protein) substrates with a strict specificity for Pro at P1. The inhibition profile is analogous to those for mammalian POPs. Both the recombinant enzyme and live worms cleave host vasoregulatory, proline-containing hormones such as angiotensin I and bradykinin. Finally, we designed nanomolar inhibitors of SmPOP that induce deleterious phenotypes in cultured schistosomes.Conclusions/SignificanceWe provide the first localization and functional analysis of SmPOP together with chemical tools for measuring its activity. We briefly discuss the notion that SmPOP, operating at the host-parasite interface to cleave host bioactive peptides, may contribute to the survival of the parasite. If substantiated, SmPOP could be a new target for the development of anti-schistosomal drugs.
BackgroundBlood flukes (Schistosoma spp.) are parasites that can survive for years or decades in the vasculature of permissive mammalian hosts, including humans. Proteolytic enzymes (proteases) are crucial for successful parasitism, including aspects of invasion, maturation and reproduction. Most attention has focused on the ‘cercarial elastase’ serine proteases that facilitate skin invasion by infective schistosome larvae, and the cysteine and aspartic proteases that worms use to digest the blood meal. Apart from the cercarial elastases, information regarding other S. mansoni serine proteases (SmSPs) is limited. To address this, we investigated SmSPs using genomic, transcriptomic, phylogenetic and functional proteomic approaches.Methodology/Principal FindingsGenes encoding five distinct SmSPs, termed SmSP1 - SmSP5, some of which comprise disparate protein domains, were retrieved from the S. mansoni genome database and annotated. Reverse transcription quantitative PCR (RT- qPCR) in various schistosome developmental stages indicated complex expression patterns for SmSPs, including their constituent protein domains. SmSP2 stood apart as being massively expressed in schistosomula and adult stages. Phylogenetic analysis segregated SmSPs into diverse clusters of family S1 proteases. SmSP1 to SmSP4 are trypsin-like proteases, whereas SmSP5 is chymotrypsin-like. In agreement, trypsin-like activities were shown to predominate in eggs, schistosomula and adults using peptidyl fluorogenic substrates. SmSP5 is particularly novel in the phylogenetics of family S1 schistosome proteases, as it is part of a cluster of sequences that fill a gap between the highly divergent cercarial elastases and other family S1 proteases.Conclusions/SignificanceOur series of post-genomics analyses clarifies the complexity of schistosome family S1 serine proteases and highlights their interrelationships, including the cercarial elastases and, not least, the identification of a ‘missing-link’ protease cluster, represented by SmSP5. A framework is now in place to guide the characterization of individual proteases, their stage-specific expression and their contributions to parasitism, in particular, their possible modulation of host physiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.