Recent technological advances have opened unprecedented opportunities for large-scale sequencing and analysis of populations of pathogenic species in disease outbreaks, as well as for large-scale diversity studies aimed at expanding our knowledge across the whole domain of prokaryotes. To meet the challenge of timely interpretation of structure, function and meaning of this vast genetic information, a comprehensive approach to automatic genome annotation is critically needed. In collaboration with Georgia Tech, NCBI has developed a new approach to genome annotation that combines alignment based methods with methods of predicting protein-coding and RNA genes and other functional elements directly from sequence. A new gene finding tool, GeneMarkS+, uses the combined evidence of protein and RNA placement by homology as an initial map of annotation to generate and modify ab initio gene predictions across the whole genome. Thus, the new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies more on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence. The pipeline provides a framework for generation and analysis of annotation on the full breadth of prokaryotic taxonomy. For additional information on PGAP see https://www.ncbi.nlm.nih.gov/genome/annotation_prok/ and the NCBI Handbook, https://www.ncbi.nlm.nih.gov/books/NBK174280/.
PubChem (https://pubchem.ncbi.nlm.nih.gov) is a key chemical information resource for the biomedical research community. Substantial improvements were made in the past few years. New data content was added, including spectral information, scientific articles mentioning chemicals, and information for food and agricultural chemicals. PubChem released new web interfaces, such as PubChem Target View page, Sources page, Bioactivity dyad pages and Patent View page. PubChem also released a major update to PubChem Widgets and introduced a new programmatic access interface, called PUG-View. This paper describes these new developments in PubChem.
PubChem (https://pubchem.ncbi.nlm.nih.gov) is a popular chemical information resource that serves the scientific community as well as the general public, with millions of unique users per month. In the past two years, PubChem made substantial improvements. Data from more than 100 new data sources were added to PubChem, including chemical-literature links from Thieme Chemistry, chemical and physical property links from SpringerMaterials, and patent links from the World Intellectual Properties Organization (WIPO). PubChem's homepage and individual record pages were updated to help users find desired information faster. This update involved a data model change for the data objects used by these pages as well as by programmatic users. Several new services were introduced, including the PubChem Periodic Table and Element pages, Pathway pages, and Knowledge panels. Additionally, in response to the coronavirus disease 2019 (COVID-19) outbreak, PubChem created a special data collection that contains PubChem data related to COVID-19 and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.