Summary Medulloblastoma, the most common malignant pediatric brain tumour, is currently treated with non-specific cytotoxic therapies including surgery, whole brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, prior attempts to identify targets for therapy have been underpowered due to small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup enriched. The most common region of focal copy number gain is a tandem duplication of the Parkinson’s disease gene SNCAIP, which is exquisitely restricted to Group 4α. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1 that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGFβ signaling in Group 3, and NF-κB signaling in Group 4 suggest future avenues for rational, targeted therapy.
Combining subgroup and cytogenetic biomarkers with established clinical biomarkers substantially improves patient prognostication, even in the context of heterogeneous clinical therapies. The prognostic significance of most molecular biomarkers is restricted to a specific subgroup. We have identified a small panel of cytogenetic biomarkers that reliably identifies very high-risk and very low-risk groups of patients, making it an excellent tool for selecting patients for therapy intensification and therapy de-escalation in future clinical trials.
SummaryBackgroundIncomplete surgical resection of medulloblastoma is controversially considered a marker of high-risk disease; driving aggressive surgical resections, “second-look” surgeries, and/or intensified chemoradiotherapy. All prior publications evaluating the clinical importance of extent of resection (EOR) failed to account for molecular subgroup. We analysed the prognostic value of EOR across 787 medulloblastoma samples in a subgroup-specific manner.MethodsWe retrospectively identified patients from Medulloblastoma Advanced Genomics International Consortium (MAGIC) centres with a histological diagnosis of medulloblastoma and complete extent of resection and survival data. Specimens were collected from 35 international institutions. Medulloblastoma subgroup affiliation was determined using nanoString gene expression profiling on frozen or formalin-fixed paraffin-embedded tissues. Extent of resection (EOR) based on post-operative imaging was classified as gross total (GTR), near total (NTR, <1·5cm2), or subtotal (STR, ≥ 1·5cm2). Overall survival (OS) and progression-free survival (PFS) multivariable analyses including subgroup, age, metastatic status, geographical location of therapy (North America/Australia vs world), and adjuvant therapy regimen were performed. The primary endpoint was the impact of surgical EOR by molecular subgroup and other clinical variables on OS and PFS.Findings787 medulloblastoma patients (86 WNT, 242 SHH, 163 Group 3, and 296 Group 4) were included in a multivariable Cox model of PFS and OS. The marked benefit of EOR in the overall cohort was greatly attenuated after including molecular subgroup in the multivariable analysis. There was an observed PFS benefit of GTR over STR (hazard ration [HR] 1·45, 95% CI; 1·07–1·96, p=0·02) but there was no observed PFS or OS benefit of GTR over NTR (HR 1·05, 0·71–1·53, p=0·82 and HR 1·14, 0·75–1·72, p=0.55). There was no statistically significant survival benefit to greater EOR for patients with WNT, SHH, or Group 3 patients (HR 1·03, 0·67–1·58, p=0·9 for STR vs. GTR). There was a PFS benefit for GTR over STR in patients with Group 4 medulloblastoma (HR1·97, 1·22–3·17, p=0·01), particularly those with metastatic disease (HR 2·22, 1–4·93, p=0·05). A nomogram based on this multivariable cox proportional hazards model shows the comparably smaller impact of EOR on relative risk for PFS and OS than subgroup affiliation, metastatic status, radiation dose, and adjuvant chemotherapy.InterpretationThe prognostic benefit of EOR for patients with medulloblastoma is attenuated after accounting for molecular subgroup affiliation. Although maximal safe surgical resection should remain the standard of care, surgical removal of small residual portions of medulloblastoma is not recommended when the likelihood of neurological morbidity is high as there is no definitive benefit to GTR over NTR. Our results suggest a re-evaluation of the long-term implications of intensified craniospinal irradiation (36 Gy) in children with small residual portions of medullobla...
MicroRNAs are endogenously expressed regulatory noncoding RNAs. Previous studies showed altered expression levels of several microRNAs in glioblastomas. In this study, we examined the expression levels of selected microRNAs in 22 primary glioblastomas and six specimens of adult brain tissue by real-time PCR method. In addition, we examined methylation status of MGMT promoter by methylation-specific real-time PCR, as this has been shown to be a predictive marker in glioblastomas. MGMT methylation status was not correlated with response to concomitant chemoradiotherapy with temozolomide (RT/TMZ). MiR-221 (p=0,016), miR-222 (p=0,038), miR-181b (p=0,036), miR-181c (p=0,043) and miR-128a (p=0,001) were significantly down-regulated in glioblastomas. The most significant change was observed for up-regulation in miR-21 expression in glioblastomas (p<0,001). MiR-181b and miR-181c were significantly down-regulated in patients who responded to RT/TMZ (p=0,016; p=0,047, respectively) in comparison to patients with progredient disease. Our data indicate for the first time that expression levels of miR-181b and miR-181c could serve as a predictive marker of response to RT/TMZ therapy in glioblastoma patients.
Glioblastoma multiforme (GBM) is the most frequently occurring primary malignant brain tumor; patients with GBM often have a very poor prognosis and differing responses to treatment. Therefore, it is very important to find new biomarkers that can predict clinical outcomes and help in treatment decisions. MicroRNAs are small, non-coding RNAs that function as post-transcriptional regulators of gene expression and play a key role in the pathogenesis of GBM. In a group of 38 patients with primary GBM, we analyzed the expression of eight microRNAs (miR-21, miR-128a, miR-181c, miR-195, miR-196a, miR-196b, miR-221, and miR-222). In addition, we examined the methylation status of O-6-methylguanine-DNA methyltransferase (MGMT) promoter by high-resolution melting analysis, as this has been shown to be a predictive marker in GBM. MGMT methylation status correlated with progression-free survival (P = 0.0201; log-rank test) as well as with overall survival (P = 0.0054; log-rank test). MiR-195 (P = 0.0124; log-rank test) and miR-196b (P = 0.0492; log-rank test) positively correlated with overall survival. Evaluation of miR-181c in combination with miR-21 predicted time to progression within 6 months of diagnosis with 92% sensitivity and 81% specificity (P < 0.0001). Our data confirmed that the methylation status of MGMT but also miR-21, miR-181c, miR-195, and miR-196b to be associated with survival of GBM patients. Above all, we suggest that the combination of miR181c and miR-21 could be a very sensitive and specific test to identify patients at high risk of early progression after surgery. (Cancer Sci 2011; 102: 2186-2190 G lioblastoma multiforme (GBM) is the most frequently occurring primary malignant brain tumor of astrocytic origin.(1)Despite the introduction of modern therapeutic approaches, this cancer remains generally associated with very poor prognosis.(2) A significant benefit of overall survival (OS) has been achieved in patients treated with concomitant chemoradiotherapy with temozolomide (RT ⁄ TMZ), an alkylating agent. However, not all patients are sensitive to this therapy. (3,4) Because of an extremely short median survival time of glioblastoma patients and diversity in therapy response, it is very important to identify new biomarkers that can be used in prognosis and prediction of therapeutic response and ⁄ or clinical outcome in GBM patients in order to rationalize treatment decisions.MicroRNAs (miRNAs) are highly conserved, small, non-coding RNAs, 18-25 nucleotides in length, that function as posttranscriptional regulators of gene expression by silencing their mRNA targets. Bioinformatics tools estimate that miRNAs regulate up to one-third of human genes including a significant number of oncogenes, tumor suppressor genes, and genes associated with the invasion, dissemination, and chemoresistance of tumors.(5) Therefore, these molecules play significant roles in the pathogenesis of many cancers, including GBM. (6,7) In the context of this tumor, recent published reports have proposed that some miRNAs tha...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.