Shiga-toxin-producing Escherichia coli (STEC) O157:H7 is a recently emerged zoonotic pathogen with considerable morbidity. Since the emergence of this serotype in the 1980s, research has focussed on unravelling the evolutionary events from the E. coli O55:H7 ancestor to the contemporaneous globally dispersed strains observed today. In this study, the genomes of over 1000 isolates from both human clinical cases and cattle, spanning the history of STEC O157:H7 in the UK, were sequenced. Phylogenetic analysis revealed the ancestry, key acquisition events and global context of the strains. Dated phylogenies estimated the time to evolution of the most recent common ancestor of the current circulating global clone to be 175 years ago. This event was followed by rapid diversification. We show the acquisition of specific virulence determinates has occurred relatively recently and coincides with its recent detection in the human population. We used clinical outcome data from 493 cases of STEC O157:H7 to assess the relative risk of severe disease including haemolytic uraemic syndrome from each of the defined clades in the population and show the dramatic effect Shiga toxin repertoire has on virulence. We describe two strain replacement events that have occurred in the cattle population in the UK over the last 30 years, one resulting in a highly virulent strain that has accounted for the majority of clinical cases in the UK over the last decade. There is a need to understand the selection pressures maintaining Shiga-toxin-encoding bacteriophages in the ruminant reservoir and the study affirms the requirement for close surveillance of this pathogen in both ruminant and human populations.
Escherichia coli O157 infections are the cause of sporadic or epidemic cases of often bloody diarrhea that can progress to hemolytic uremic syndrome (HUS), a systematic microvascular syndrome with predominately renal and neurological complications. HUS is responsible for most deaths associated with E. coli O157 infection. From March 2002 to February 2004, approximately 13,000 fecal pat samples from 481 farms with finishing/ store cattle throughout Scotland were examined for the presence of E. coli O157. A total of 441 fecal pats from 91 farms tested positive for E. coli O157. From the positive samples, a point estimate for high-level shedders was identified using mixture distribution analysis on counts of E. coli O157. Models were developed based on the confidence interval surrounding this point estimate (high-level shedder, greater than 10 3 or greater than 10 4 CFU g ؊1 feces). The mean prevalence on high-level-shedding farms was higher than that on low-levelshedding farms. The presence of a high-level shedder on a farm was found to be associated with a high proportion of low-level shedding, consistent with the possibility of a higher level of transmission. Analysis of risk factors associated with the presence of a high-level shedder on a farm suggested the importance of the pathogen and individual host rather than the farm environment. The proportion of high-level shedders of phage 21/28 was higher than expected by chance. Management-related risk factors that were identified included the type of cattle (female breeding cattle) and cattle stress (movement and weaning), as opposed to environmental factors, such as water supply and feed.Verocytotoxin-producing Escherichia coli (VTEC), such as E. coli O157, is an important zoonotic agent with worldwide distribution. E. coli O157 may cause sporadic or epidemic cases of often bloody diarrhea that can progress to hemorrhagic colitis, thrombotic thrombocytopenic purpura, and hemolytic uremic syndrome (HUS) (21). HUS is a systematic microvascular syndrome that is initiated by secreted shiga toxins, with predominately renal and neurological complications, which are responsible for most deaths associated with E. coli O157 infection, particularly among elderly patients (22). Infection with E. coli O157 is a leading cause of acute renal failure in children (8). The incidence of E. coli O157 infection in Scotland is substantially higher than elsewhere in Great Britain (28) Healthy cattle shed E. coli O157 in their feces (9,17,35), and this pathogen is present in most cattle operations (48). Cattle are the main reservoir host for E. coli O157 and other VTEC in the developed world (1) and play a significant role in the epidemiology of human infections (13). Outbreaks are attributed to consumption of contaminated food and water, animal contact, and person-to-person transmission (51). However, case control studies of sporadic infections, which account for the majority of cases of E. coli O157 infection in Scotland, have indicated direct contact with animals, their feces, and/...
Escherichia coli O157:H7 is an important cause of diarrhea, hemorrhagic colitis, and potentially fatal human illness. Cattle are considered a primary reservoir of infection, and recent experimental evidence has indicated that the terminal rectum is the principal site of bacterial carriage. To test this finding in naturally colonized animals, intact rectum samples from 267 cattle in 24 separate lots were obtained immediately after slaughter, and fecal material and mucosal surfaces were cultured for E. coli O157 by direct and enrichment methods. Two locations, 1 and 15 cm proximal to the recto-anal junction, were tested. In total, 35 animals were positive for E. coli O157 at at least one of the sites and 232 animals were negative as determined by all tests. The frequency of isolation and the numbers of E. coli O157 cells were higher at the site closer to the recto-anal junction, confirming our previous experimental findings. We defined low-and high-level carriers as animals with E. coli O157 levels of <1 ؋ 10 3 CFU g ؊1 or <1 ؋ 10 3 CFU ml ؊1 and animals with E. coli O157 levels of >1 ؋ 10 3 CFU g ؊1 or >1 ؋ 10 3 CFU ml ؊1 in feces or tissues, respectively. High-level carriage was detected in 3.7% of the animals (95% confidence interval, 1.8 to 6.8%), and carriage on the mucosal surface of the terminal rectum was associated with high-level fecal excretion. In summary, our results support previous work demonstrating that the mucosal epithelium in the bovine terminal rectum is an important site for E. coli O157 carriage in cattle. The data also support the hypothesis that high-level fecal shedding (>1 ؋ 10 3 CFU g of feces ؊1 ) of enterohemorrhagic E. coli O157 results from colonization of this site.
Molecular characterization and subtyping show genetic diversities within clonal complexes.
Identifying the major sources of risk in disease transmission is key to designing effective controls. However, understanding of transmission dynamics across species boundaries is typically poor, making the design and evaluation of controls particularly challenging for zoonotic pathogens. One such global pathogen is Escherichia coli O157, which causes a serious and sometimes fatal gastrointestinal illness. Cattle are the main reservoir for E. coli O157, and vaccines for cattle now exist. However, adoption of vaccines is being delayed by conflicting responsibilities of veterinary and public health agencies, economic drivers, and because clinical trials cannot easily test interventions across species boundaries, lack of information on the public health benefits. Here, we examine transmission risk across the cattle-human species boundary and show three key results. First, supershedding of the pathogen by cattle is associated with the genetic marker stx2. Second, by quantifying the link between shedding density in cattle and human risk, we show that only the relatively rare supershedding events contribute significantly to human risk. Third, we show that this finding has profound consequences for the public health benefits of the cattle vaccine. A naïve evaluation based on efficacy in cattle would suggest a 50% reduction in risk; however, because the vaccine targets the major source of human risk, we predict a reduction in human cases of nearly 85%. By accounting for nonlinearities in transmission across the human-animal interface, we show that adoption of these vaccines by the livestock industry could prevent substantial numbers of human E. coli O157 cases.zoonoses | cross-species transmission | 80-20 rule | one health
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.