Background-Vascular calcification is associated with increased morbidity and mortality in stage V chronic kidney disease, yet its early pathogenesis and initiating mechanisms in vivo remain poorly understood. To address this, we quantified the calcium (Ca) load in arteries from children (10 predialysis, 24 dialysis) and correlated it with clinical, biochemical, and vascular measures. Methods and Results-Vessel Ca load was significantly elevated in both predialysis and dialysis and was correlated with the patients' mean serum Caϫphosphate product. However, only dialysis patients showed increased carotid intimamedia thickness and increased aortic stiffness, and calcification on computed tomography was present in only the 2 patients with the highest Ca loads. Importantly, predialysis vessels appeared histologically intact, whereas dialysis vessels exhibited evidence of extensive vascular smooth muscle cell (VSMC) loss owing to apoptosis. Dialysis vessels also showed increased alkaline phosphatase activity and Runx2 and osterix expression, indicative of VSMC osteogenic transformation. Deposition of the vesicle membrane marker annexin VI and vesicle component mineralization inhibitors fetuin-A and matrix Gla-protein increased in dialysis vessels and preceded von Kossa positive overt calcification. Electron microscopy showed hydroxyapatite nanocrystals within vesicles released from damaged/dead VSMCs, indicative of their role in initiating calcification. Conclusions-Taken together, this study shows that Ca accumulation begins predialysis, but it is the induction of VSMC apoptosis in dialysis that is the key event in disabling VSMC defense mechanisms and leading to overt calcification, eventually with clinically detectable vascular damage. Thus the identification of factors that lead to VSMC death in dialysis will be of prime importance in preventing vascular calcification. (Circulation. 2008;118:1748-1757.)
Autosomal dominant polycystic kidney disease (ADPKD) caused by mutations in PKD1 is significantly more severe than PKD2. Typically, ADPKD presents in adulthood but is rarely diagnosed in utero with enlarged, echogenic kidneys. Somatic mutations are thought crucial for cyst development, but gene dosage is also important since animal models with hypomorphic alleles develop cysts, but are viable as homozygotes. We screened for mutations in PKD1 and PKD2 in two consanguineous families and found PKD1 missense variants predicted to be pathogenic. In one family, two siblings homozygous for R3277C developed end stage renal disease at ages 75 and 62 years, while six heterozygotes had few cysts. In the other family, the father and two children with moderate to severe disease were homozygous for N3188S. In both families homozygous disease was associated with small cysts of relatively uniform size while marked cyst heterogeneity is typical of ADPKD. In another family, one patient diagnosed in childhood was found to be a compound heterozygote for the PKD1 variants R3105W and R2765C. All three families had evidence of developmental defects of the collecting system. Three additional ADPKD families with in utero onset had a truncating mutation in trans with either R3277C or R2765C. These cases suggest the presence of incompletely penetrant PKD1 alleles. The alleles alone may result in mild cystic disease; two such alleles cause typical to severe disease; and, in combination with an inactivating allele, are associated with early onset disease. Our study indicates that the dosage of functional PKD1 protein may be critical for cyst initiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.