The role of progenitor/stem cells in pituitary tumorigenesis, resistance to pharmacological treatments and tumor recurrence is still unclear. This study investigated the presence of progenitor/stem cells in non-functioning pituitary tumors (NFPTs) and tested the efficacy of dopamine receptor type 2 (DRD2) and somatostatin receptor type 2 (SSTR2) agonists to inhibit in vitro proliferation. They found that 70% of 46 NFPTs formed spheres co-expressing stem cell markers, transcription factors (DAX1, SF1, ERG1) and gonadotropins. Analysis of tumor behavior showed that spheres formation was associated with tumor invasiveness (OR = 3,96; IC: 1.05-14.88, p = 0.036). The in vitro reduction of cell proliferation by DRD2 and SSTR2 agonists (31 ± 17% and 35 ± 13% inhibition, respectively, p < 0.01 vs. basal) occurring in about a half of NFPTs cells was conserved in the corresponding spheres. Accordingly, these drugs increased cyclin-dependent kinase inhibitor p27 and decreased cyclin D3 expression in spheres. In conclusion, they provided further evidence for the existence of cells with a progenitor/stem cells-like phenotype in the majority of NFPTs, particularly in those with invasive behavior, and demonstrated that the antiproliferative effects of dopaminergic and somatostatinergic drugs were maintained in progenitor/stem-like cells.
Sox6 belongs to the Sry (sex-determining region Y)-related high-mobility-groupbox family of transcription factors, which control cell-fate specification of many cell types. Here, we explored the role of Sox6 in human erythropoiesis by its overexpression both in the erythroleukemic K562 cell line and in primary erythroid cultures from human cord blood CD34 ؉ cells. Sox6 induced significant erythroid differentiation in both models. K562 cells underwent hemoglobinization and, despite their leukemic origin, died within 9 days after transduction; primary erythroid cultures accelerated their kinetics of erythroid maturation and increased the number of cells that reached the final enucleation step. Searching for direct Sox6 targets, we found SOCS3 (suppressor of cytokine signaling-3), a known mediator of cytokine response. Sox6 was bound in vitro and in vivo to an evolutionarily conserved regulatory SOCS3 element, which induced transcriptional activation. SOCS3 overexpression in K562 cells and in primary erythroid cells recapitulated the growth inhibition induced by Sox6, which demonstrates that SOCS3 is a relevant Sox6 effector. (Blood. 2011;117(13):3669-3679) IntroductionSox proteins are important transcriptional regulators of different developmental processes in which they control the specification and differentiation of many cell types. [1][2][3] In particular, Sox6, originally isolated from adult mouse testis, 4 is required for the development of the central nervous system, 5-7 for chondrogenesis, 8 and for cardiac and skeletal muscle formation. 9,10 Recently, Sox6 has been demonstrated to be crucial for definitive erythropoiesis, 11-15 a process in which committed progenitors progressively differentiate into burst-forming-unit erythroid cells and colonyforming-unit (CFU) erythroid cells, which in turn give rise to proerythroblasts and erythroblasts and finally to mature, enucleated red blood cells. These differentiation stages are accompanied by profound maturational changes: Within few cell divisions, in parallel with the accumulation of erythroid-specific markers (membrane proteins, enzymes required for the heme biosynthesis pathway, and globins), cells undergo chromatin condensation and enucleate. 16,17 This complex spectrum of maturational steps is controlled at the molecular level by the integration of extrinsic (growth factors; oxygen and iron availability) and intrinsic (growth factor receptors, signaling mediators, transcription factors) signals.Several transcription factors are essential for erythroid commitment and for differential globin gene expression during development; their absence is associated with a wide spectrum of phenotypes ranging from mild perturbation to death because of a complete failure of erythropoiesis. 18,19 Among them, Sox6 recently has been shown to stimulate erythroid cell survival, proliferation, and terminal maturation during definitive murine erythropoiesis. 11,12 Sox6-null mouse fetuses and pups are anemic and have defective red blood cells. Recently, Sox6 has been implicated...
Duchenne muscular dystrophy is an inherited fatal genetic disease characterized by mutations in dystrophin gene, causing membrane fragility leading to myofiber necrosis and inflammatory cell recruitment in dystrophic muscles. The resulting environment enriched in proinflammatory cytokines, like IFN-γ and TNF-α, determines the transformation of myofiber constitutive proteasome into the immunoproteasome, a multisubunit complex involved in the activation of cell-mediate immunity. This event has a fundamental role in producing peptides for antigen presentation by MHC class I, for the immune response and also for cytokine production and T-cell differentiation. Here, we characterized for the first time the presence of T-lymphocytes activated against revertant dystrophin epitopes, in the animal model of Duchenne muscular dystrophy, the mdx mice. Moreover, we specifically blocked i-proteasome subunit LMP7, which was up-regulated in dystrophic skeletal muscles, and we demonstrated the rescue of the dystrophin expression and the amelioration of the dystrophic phenotype. The i-proteasome blocking lowered myofiber MHC class I expression and self-antigen presentation to T cells, thus reducing the specific antidystrophin T cell response, the muscular cell infiltrate, and proinflammatory cytokine production, together with muscle force recovery. We suggest that i-proteasome inhibition should be considered as new promising therapeutic approach for Duchenne muscular dystrophy pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.