Background We aimed for a comprehensive delineation of genetic, functional and phenotypic aspects of GRIN2B encephalopathy and explored potential prospects of personalised medicine. Methods Data of 48 individuals with de novo GRIN2B variants were collected from several diagnostic and research cohorts, as well as from 43 patients from the literature. Functional consequences and response to memantine treatment were investigated in vitro and eventually translated into patient care. Results Overall, de novo variants in 86 patients were classified as pathogenic/likely pathogenic. Patients presented with neurodevelopmental disorders and a spectrum of hypotonia, movement disorder, cortical visual impairment, cerebral volume loss and epilepsy. Six patients presented with a consistent malformation of cortical development (MCD) intermediate between tubulinopathies and polymicrogyria. Missense variants cluster in transmembrane segments and ligand-binding sites. Functional consequences of variants were diverse, revealing various potential gain-of-function and loss-of-function mechanisms and a retained sensitivity to the use-dependent blocker memantine. However, an objectifiable beneficial treatment response in the respective patients still remains to be demonstrated. Conclusions In addition to previously known features of intellectual disability, epilepsy and autism, we found evidence that GRIN2B encephalopathy is also frequently associated with movement disorder, cortical visual impairment and MCD revealing novel phenotypic consequences of channelopathies.
BackgroundDe novo mutations in PURA have recently been described to cause PURA syndrome, a neurodevelopmental disorder characterised by severe intellectual disability (ID), epilepsy, feeding difficulties and neonatal hypotonia.ObjectivesTo delineate the clinical spectrum of PURA syndrome and study genotype-phenotype correlations.MethodsDiagnostic or research-based exome or Sanger sequencing was performed in individuals with ID. We systematically collected clinical and mutation data on newly ascertained PURA syndrome individuals, evaluated data of previously reported individuals and performed a computational analysis of photographs. We classified mutations based on predicted effect using 3D in silico models of crystal structures of Drosophila-derived Pur-alpha homologues. Finally, we explored genotype-phenotype correlations by analysis of both recurrent mutations as well as mutation classes.ResultsWe report mutations in PURA (purine-rich element binding protein A) in 32 individuals, the largest cohort described so far. Evaluation of clinical data, including 22 previously published cases, revealed that all have moderate to severe ID and neonatal-onset symptoms, including hypotonia (96%), respiratory problems (57%), feeding difficulties (77%), exaggerated startle response (44%), hypersomnolence (66%) and hypothermia (35%). Epilepsy (54%) and gastrointestinal (69%), ophthalmological (51%) and endocrine problems (42%) were observed frequently. Computational analysis of facial photographs showed subtle facial dysmorphism. No strong genotype-phenotype correlation was identified by subgrouping mutations into functional classes.ConclusionWe delineate the clinical spectrum of PURA syndrome with the identification of 32 additional individuals. The identification of one individual through targeted Sanger sequencing points towards the clinical recognisability of the syndrome. Genotype-phenotype analysis showed no significant correlation between mutation classes and disease severity.
PurposeTruncating mutations in the maternally imprinted, paternally expressed gene MAGEL2, which is located in the Prader-Willi critical region 15q11-13, have recently been reported to cause Schaaf-Yang syndrome, a Prader-Willi-like disease, manifesting developmental delay/intellectual disability, hypotonia, feeding difficulties, and autism spectrum disorder. The causality of the reported variants in the context of the patients’ phenotypes was questioned, as MAGEL2 whole gene deletions appear to cause little to no clinical phenotype.MethodsHere we report a total of 18 new individuals with Schaaf-Yang syndrome from 14 families, including one family with three individuals found to be affected with a truncating variant of MAGEL2, 11 individuals clinically affected, but not tested molecularly, and a presymptomatic fetal sibling with carrying the pathogenic MAGEL2 variant.ResultsAll cases harbor truncating mutations of MAGEL2, and nucleotides c.1990-1996 arise as a mutational hotspot, with 10 individuals and one fetus harboring a c.1996dupC (p.Q666fs) mutation and two fetuses harboring a c.1996delC (p.Q666fs). The phenotypic spectrum of Schaaf-Yang syndrome ranges from fetal akinesia to individuals with neurobehavioral disease and contractures of the small finger joints.ConclusionThis study provides strong evidence for the pathogenicity of truncating mutations of the paternal allele of MAGEL2, refines the associated clinical phenotypes, and highlights implications for genetic counseling of affected families.
Pyridoxine‐dependent epilepsy (PDE‐ALDH7A1) is an autosomal recessive condition due to a deficiency of α‐aminoadipic semialdehyde dehydrogenase, which is a key enzyme in lysine oxidation. PDE‐ALDH7A1 is a developmental and epileptic encephalopathy that was historically and empirically treated with pharmacologic doses of pyridoxine. Despite adequate seizure control, most patients with PDE‐ALDH7A1 were reported to have developmental delay and intellectual disability. To improve outcome, a lysine‐restricted diet and competitive inhibition of lysine transport through the use of pharmacologic doses of arginine have been recommended as an adjunct therapy. These lysine‐reduction therapies have resulted in improved biochemical parameters and cognitive development in many but not all patients. The goal of these consensus guidelines is to re‐evaluate and update the two previously published recommendations for diagnosis, treatment, and follow‐up of patients with PDE‐ALDH7A1. Members of the International PDE Consortium initiated evidence and consensus‐based process to review previous recommendations, new research findings, and relevant clinical aspects of PDE‐ALDH7A1. The guideline development group included pediatric neurologists, biochemical geneticists, clinical geneticists, laboratory scientists, and metabolic dieticians representing 29 institutions from 16 countries. Consensus guidelines for the diagnosis and management of patients with PDE‐ALDH7A1 are provided.
Sequencing studies have implicated haploinsufficiency of ARID1B, a SWI/SNF chromatin-remodeling subunit, in short stature (Yu et al., 2015), autism spectrum disorder (O'Roak et al., 2012), intellectual disability (Deciphering Developmental Disorders Study, 2015), and corpus callosum agenesis (Halgren et al., 2012). In addition, ARID1B is the most common cause of Coffin-Siris syndrome, a developmental delay syndrome characterized by some of the above abnormalities (Santen et al., 2012; Tsurusaki et al., 2012; Wieczorek et al., 2013). We generated Arid1b heterozygous mice, which showed social behavior impairment, altered vocalization, anxiety-like behavior, neuroanatomical abnormalities, and growth impairment. In the brain, Arid1b haploinsufficiency resulted in changes in the expression of SWI/SNF-regulated genes implicated in neuropsychiatric disorders. A focus on reversible mechanisms identified Insulin-like growth factor (IGF1) deficiency with inadequate compensation by Growth hormone-releasing hormone (GHRH) and Growth hormone (GH), underappreciated findings in ARID1B patients. Therapeutically, GH supplementation was able to correct growth retardation and muscle weakness. This model functionally validates the involvement of ARID1B in human disorders, and allows mechanistic dissection of neurodevelopmental diseases linked to chromatin-remodeling.DOI: http://dx.doi.org/10.7554/eLife.25730.001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.