Drug-drug, drug-formulation and drug-meal interactions are of clinical concern for orally administered drugs that possess a narrow therapeutic index. This review presents the current status of information regarding interactions which may influence the gastrointestinal (GI) absorption of orally administered drugs. Absorption interactions have been classified on the basis of rate-limiting processes. These processes are put in the context of drug and formulation physicochemical properties and oral input influences on variable GI physiology. Interaction categorisation makes use of a biopharmaceutical classification system based on drug aqueous solubility and membrane permeability and their contributions towards absorption variability. Overlaying this classification it is important to be aware of the effect that the magnitudes of drug dosage and volume of fluid administration can have on interactions involving a solubility rate limits. GI regional differences in membrane permeability are fundamental to the rational development of extended release dosage forms as well as to predicting interaction effects on absorption from immediate release dosage forms. The effect of meals on the regional-dependent intestinal elimination of drugs and their involvement in drug absorption interactions is also discussed. Although the clinical significance of such interactions is certainly dependent on the narrowness of the drug therapeutic index, clinical aspects of absorption delays and therapeutic failures resulting from various interactions are also important.
Gallic acid (GA), a naturally abundant plant phenolic compound in vegetables and fruits, has been shown to have potent anti-oxidative and anti-obesity activity. However, the effects of GA on nonalcoholic fatty liver disease (NAFLD) are poorly understood. In this study, we investigated the beneficial effects of GA administration on nutritional hepatosteatosis model by a more “holistic view” approach, namely 1H NMR-based metabolomics, in order to prove efficacy and to obtain information that might lead to a better understanding of the mode of action of GA. Male C57BL/6 mice were placed for 16 weeks on either a normal chow diet, a high fat diet (HFD, 60%), or a high fat diet supplemented with GA (50 and 100 mg/kg/day, orally). Liver histopathology and serum biochemical examinations indicated that the daily administration of GA protects against hepatic steatosis, obesity, hypercholesterolemia, and insulin resistance among the HFD-induced NAFLD mice. In addition, partial least squares discriminant analysis scores plots demonstrated that the cluster of HFD fed mice is clearly separated from the normal group mice plots, indicating that the metabolic characteristics of these two groups are distinctively different. Specifically, the GA-treated mice are located closer to the normal group of mice, indicating that the HFD-induced disturbances to the metabolic profile were partially reversed by GA treatment. Our results show that the hepatoprotective effect of GA occurs in part through a reversing of the HFD caused disturbances to a range of metabolic pathways, including lipid metabolism, glucose metabolism (glycolysis and gluconeogenesis), amino acids metabolism, choline metabolism and gut-microbiota-associated metabolism. Taken together, this study suggested that a 1H NMR-based metabolomics approach is a useful platform for natural product functional evaluation. The selected metabolites are potentially useful as preventive action biomarkers and could also be used to help our further understanding of the effect of GA in hepatosteatosis mice.
Processing of Chinese medicines is a pharmaceutical technique that transforms medicinal raw materials into decoction pieces for use in different therapies. Various adjuvants, such as vinegar, wine, honey, and brine, are used in the processing to enhance the efficacy and reduce the toxicity of crude drugs. Proper processing is essential to ensure the quality and safety of traditional Chinese medicines (TCMs). Therefore, sound knowledge of processing principles is crucial to the standardized use of these processing adjuvants and to facilitate the production and clinical use of decoction pieces. Many scientific reports have indicated the synergistic effects of processing mechanisms on the chemistry, pharmacology, and pharmacokinetics of the active ingredients in TCMs. Under certain conditions, adjuvants change the content of active or toxic components in drugs by chemical or physical transformation, increase or decrease drug dissolution, exert their own pharmacological effects, or alter drug pharmacokinetics. This review summarizes various processing methods adopted in the last two decades, and highlights current approaches to identify the effects of processing parameters on TCMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.