Pulp necrosis arrests root development in injured immature permanent teeth, which may result in tooth loss. However, dental pulp regeneration and promotion of root development remains challenging. We show that implantation of autologous tooth stem cells from deciduous teeth regenerated dental pulp with an odontoblast layer, blood vessels, and nerves in two animal models. These results prompted us to enroll 40 patients with pulp necrosis after traumatic dental injuries in a randomized, controlled clinical trial. We randomly allocated 30 patients to the human deciduous pulp stem cell (hDPSC) implantation group and 10 patients to the group receiving traditional apexification treatment. Four patients were excluded from the implantation group due to loss at follow-up (three patients) and retrauma of the treated tooth (one patient). We examined 26 patients (26 teeth) after hDPSC implantation and 10 patients (10 teeth) after apexification treatment. hDPSC implantation, but not apexification treatment, led to regeneration of three-dimensional pulp tissue equipped with blood vessels and sensory nerves at 12 months after treatment. hDPSC implantation increased the length of the root ( < 0.0001) and reduced the width of the apical foramen ( < 0.0001) compared to the apexification group. In addition, hDPSC implantation led to regeneration of dental pulp tissue containing sensory nerves. To evaluate the safety of hDPSC implantation, we followed 20 patients implanted with hDPSCs for 24 months and did not observe any adverse events. Our study suggests that hDPSCs are able to regenerate whole dental pulp and may be useful for treating tooth injuries due to trauma.
Mesenchymal stem cell transplantation (MSCT) promotes cutaneous wound healing. Numerous studies have shown that the therapeutic effects of MSCT appear to be mediated by paracrine signaling. However, the cell-cell interaction during MSCT between MSCs and macrophages in the region of cutaneous wound healing is still unknown. In this study, early depletion of macrophages delayed the wound repair with MSC injection, which suggested that MSC-mediated wound healing required macrophages. Moreover, we demonstrated that systemically infused bone marrow MSCs (BMMSCs) and jaw bone marrow MSCs (JMMSCs) could translocate to the wound site, promote macrophages toward M2 polarization, and enhance wound healing.In vitrococulture of MSCs with macrophages enhanced their M2 polarization. Mechanistically, we found that exosomes derived from MSCs induced macrophage polarization and depletion of exosomes of MSCs reduced the M2 phenotype of macrophages. Infusing MSCs without exosomes led to lower number of M2 macrophages at the wound site along with delayed wound repair. We further showed that the miR-223, derived from exosomes of MSCs, regulated macrophage polarization by targeting pknox1. These findings provided the evidence that MSCT elicits M2 polarization of macrophages and may accelerate wound healing by transferring exosome-derived microRNA.
Inflammatory cytokines, especially tumor necrosis factor a (TNF-a), have been shown to inhibit osteogenic differentiation of mesenchymal stem cells (MSCs) and bone formation in estrogen deficiency-induced osteoporosis, but the mechanism responsible remains poorly understood. MicroRNAs (miRNAs) have been shown to regulate MSC differentiation. Here, we identified a novel mechanism whereby TNF-a, suppressing the functional axis of a key miRNA (miR-21) contributes to estrogen deficiency-induced osteoporosis. In this study, we screened differentially expressed miRNAs in MSCs derived from estrogen deficiency-induced osteoporosis and found miR-21 was significantly downregulated. miR-21 was suppressed by TNF-a during the osteogenesis of MSCs. Furthermore, miR-21 was confirmed to promote the osteoblast differentiation of MSCs by repressing Spry1, which can negatively regulate the osteogenic differentiation of MSCs. Upregulating miR-21 partially rescued TNF-a-impaired osteogenesis of MSCs. Blocking TNF-a ameliorated the inflammatory environment and significantly enhanced bone formation with increased miR-21 expression and suppressed Spry1 expression in ovariectomized (OVX) mice. Our results revealed a novel function for miR-21 and suggested that suppressed miR-21 may contribute to impaired bone formation by elevated TNF-a in estrogen deficiency-induced osteoporosis. This study may indicate a molecular basis for novel therapeutic strategies against osteoporosis and other inflammatory bone diseases. ß
Abstract. As a part of EUCAARI activities, the annual cycle of cloud condensation nuclei (CCN) concentrations and critical diameter for cloud droplet activation as a function of supersaturation were measured using a CCN counter and a HTDMA (hygroscopicity tandem differential mobility analyzer) at SMEAR II station, Hyytiälä, Finland. The critical diameters for CCN activation were estimated from (i) the measured CCN concentration and particle size distribution data, and (ii) the hygroscopic growth factors by applying κ-Köhler theory, in both cases assuming an internally mixed aerosol. The critical diameters derived by these two methods were in good agreement with each other. The effect of new particle formation on the diurnal variation of CCN concentration and critical diameters was studied. New particle formation was observed to increase the CCN concentrations by 70-110 %, depending on the supersaturation level. The average value for the κ-parameter determined from hygroscopicity measurements was κ = 0.18 and it predicted well the CCN activation in boreal forest conditions in Hyytiälä. The derived critical diameters and κ-parameter confirm earlier findings with other methods, that aerosol particles at CCN sizes in Hyytiälä are mostly organic, but contain also more hygrosopic, probably inorganic salts like ammonium sulphate, making the particles more CCN active than pure secondary organic aerosol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.