Early-onset Parkinson's disease (EOPD) is distinct from the classic late-onset PD (LOPD) because of its slower disease progression. The aim of this study was to compare dopamine neuronal loss in EOPD with that of LOPD with the same disease duration, through dopamine transporter (DAT) estimation. Fourteen patients, seven EOPD (<50 years) and seven LOPD, matched for disease duration were scanned with [(99m)Tc]-TRODAT-1-SPECT (INER-Taiwan), and were assessed with standard PD scales. EOPD patients had 34% lower striatal DAT binding potential (BP) compared with that of LOPD patients (BP = 0.29 +/- 0.12, BP = 0.44 +/- 0.12, P < 0.02) with similar PD severity. These results suggest that EOPD patients have greater dopamine density loss than LOPD patients without motor-symptom worsening.
BackgroundHuman cells release nano-sized vesicles called exosomes, containing mRNA, miRNA and specific proteins. Exosomes from one cell can be taken up by another cell, which is a recently discovered cell-to-cell communication mechanism. Also, exosomes can be taken up by different types of cancer cells, but the potential functional effects of mast cell exosomes on tumor cells remain unknown.Methods and resultsExosomes were isolated from the human mast cell line, HMC-1, and uptake of PKH67-labelled exosomes by the lung epithelial cell line, A549, was examined using flow cytometry and fluorescence microscopy. The RNA cargo of the exosomes was analyzed with a Bioanalyzer and absence or presence of the c-KIT mRNA was determined by RT-PCR. The cell proliferation was determined in a BrdU incorporation assay, and proteins in the KIT-SCF signaling pathway were detected by Western blot. Our result demonstrates that exosomes from mast cells can be taken up by lung cancer cells. Furthermore, HMC-1 exosomes contain and transfer KIT protein, but not the c-KIT mRNA to A549 cells and subsequently activate KIT-SCF signal transduction, which increase cyclin D1 expression and accelerate the proliferation in the human lung adenocarcinoma cells.ConclusionsOur results indicate that exosomes can transfer KIT as a protein to tumor cells, which can affect recipient cell signaling events through receptor-ligand interactions.
Background: This study sought to investigate incidence and risk factors for acute kidney injury (AKI) in hospitalized COVID-19. Methods: In this retrospective study, we enrolled 823 COVID-19 patients with at least two evaluations of renal function during hospitalization from four hospitals in Wuhan, China between February 2020 and April 2020. Clinical and laboratory parameters at the time of admission and follow-up data were recorded. Systemic renal tubular dysfunction was evaluated via 24-h urine collections in a subgroup of 55 patients. Results: In total, 823 patients were enrolled (50.5% male) with a mean age of 60.9 ± 14.9 years. AKI occurred in 38 (40.9%) ICU cases but only 6 (0.8%) non-ICU cases. Using forward stepwise Cox regression analysis, we found eight independent risk factors for AKI including decreased platelet level, lower albumin level, lower phosphorus level, higher level of lactate dehydrogenase (LDH), procalcitonin, C-reactive protein (CRP), urea, and prothrombin time (PT) on admission. For every 0.1 mmol/L decreases in serum phosphorus level, patients had a 1.34-fold (95% CI 1.14-1.58) increased risk of AKI. Patients with hypophosphatemia were likely to be older and with lower lymphocyte count, lower serum albumin level, lower uric acid, higher LDH, and higher CRP. Furthermore, serum phosphorus level was positively correlated with phosphate tubular maximum per volume of filtrate (TmP/GFR) (Pearson r ¼ 0.66, p < .001) in subgroup analysis, indicating renal phosphate loss via proximal renal tubular dysfunction. Conclusion:The AKI incidence was very low in non-ICU patients as compared to ICU patients. Hypophosphatemia is an independent risk factor for AKI in patients hospitalized for COVID-19 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.