Mesenchymal stem cells (MSCs), the major stem cells for cell therapy, have been used in the clinic for approximately 10 years. From animal models to clinical trials, MSCs have afforded promise in the treatment of numerous diseases, mainly tissue injury and immune disorders. In this review, we summarize the recent opinions on methods, timing and cell sources for MSC administration in clinical applications, and provide an overview of mechanisms that are significant in MSC-mediated therapies. Although MSCs for cell therapy have been shown to be safe and effective, there are still challenges that need to be tackled before their wide application in the clinic.
Deep far-infrared photometric surveys studying galaxy evolution and the nature of the cosmic infrared background are a key strength of the Herschel mission. We describe the scientific motivation for the PACS Evolutionary Probe (PEP) guaranteed time key program and its role within the entire set of Herschel surveys, and the field selection that includes popular multiwavelength fields such as GOODS, COSMOS, Lockman Hole, ECDFS, and EGS. We provide an account of the observing strategies and data reduction methods used. An overview of first science results illustrates the potential of PEP in providing calorimetric star formation rates for high-redshift galaxy populations, thus testing and superseding previous extrapolations from other wavelengths, and enabling a wide range of galaxy evolution studies.
Aims. We exploit deep observations of the GOODS-N field taken with PACS, the Photodetector Array Camera and Spectrometer, onboard of Herschel, as part of the PACS evolutionary probe guaranteed time (PEP), to study the link between star formation and stellar mass in galaxies to z ∼ 2. Methods. Starting from a stellar mass -selected sample of ∼4500 galaxies with mag 4.5 μm < 23.0 (AB), we identify ∼350 objects with a PACS detection at 100 or 160 μm and ∼ 1500 with only Spitzer 24 μm counterpart. Stellar masses and total IR luminosities (L IR ) are estimated by fitting the spectral energy distributions (SEDs). Results. Consistently with other Herschel results, we find that L IR based only on 24 μm data is overestimated by a median factor ∼ 1.8 at z ∼ 2, whereas it is underestimated (with our approach) up to a factor ∼ 1.6 at 0.5 < z < 1.0. We then exploit this calibration to correct L IR based on the MIPS/Spitzer fluxes. These results clearly show how Herschel is fundamental to constrain L IR , and hence the star formation rate (SFR), of high redshift galaxies. Using the galaxies detected with PACS (and/or MIPS), we investigate the existence and evolution of the relations between the SFR, the specific star formation rate (SSFR=SFR/mass) and the stellar mass. Moreover, in order to avoid selection effects, we also repeat this study through a stacking analysis on the PACS images to fully exploit the far-IR information also for the Herschel and Spitzer undetected subsamples. We find that the SSFR-mass relation steepens with redshift, being almost flat at z < 1.0 and reaching a slope of α = −0.50 +0.13 −0.16 at z ∼ 2, at odds with recent works based on radio-stacking analysis at the same redshift. The mean SSFR of galaxies increases with redshift, by a factor ∼15 for massive M > 10 11 M galaxies from z = 0 to z = 2, and seems to flatten at z > 1.5 in this mass range. Moreover, the most massive galaxies have the lowest SSFR at any z, implying that they have formed their stars earlier and more rapidly than their low mass counterparts (downsizing).
Accruing data suggest that oxidative stress may be a factor underlying the pathophysiology of bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ). Glutathione (GSH) is the major free radical scavenger in the brain. Diminished GSH levels elevate cellular vulnerability towards oxidative stress; characterized by accumulating reactive oxygen species. The aim of this study was to determine if mood disorders and SCZ are associated with abnormal GSH and its functionally related enzymes. Post-mortem prefrontal cortex from patients with BD, MDD, SCZ, and from non-psychiatric comparison controls were provided by the Stanley Foundation Neuropathology Consortium. Spectrophotometric analysis was utilized for the quantitative determination of GSH, while immunoblotting analyses were used to examine expression of glutamyl-cysteine ligase (GCL), GSH reductase (GR), and GSH peroxidase (GPx). We found that the levels of reduced, oxidized, and total GSH were significantly decreased in all psychiatric conditions compared to the control group. Although GCL and GR levels did not differ between groups, the levels of GPx were reduced in MDD and SCZ compared to control subjects. Since oxidative damage has been demonstrated in MDD, BD, and SCZ, our finding that GSH levels are reduced in post-mortem prefrontal cortex suggests that these patient groups may be more susceptible to oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.