A hybrid-fiber nanogenerator comprising a ZnO nanowire array, PVDF polymer and two electrodes is presented. Depending on the bending or spreading action of the human arm, at an angle of ∼90°, the hybrid fiber reaches electrical outputs of ∼0.1 V and ∼10 nA cm(-2) . The unique structure of the hybrid fiber may inspire future research in wearable energy-harvesting technology.
Perovskite ferroelectric nanowires have rarely been used for the conversion of tiny mechanical vibrations into electricity, in spite of their large piezoelectricity. Here we present a lead-free NaNbO(3) nanowire-based piezoelectric device as a high output and cost-effective flexible nanogenerator. The device consists of a NaNbO(3) nanowire-poly(dimethylsiloxane) (PDMS) polymer composite and Au/Cr-coated polymer films. High-quality NaNbO(3) nanowires can be grown by hydrothermal method at low temperature and can be poled by an electric field at room temperature. The NaNbO(3) nanowire-PDMS polymer composite device shows an output voltage of 3.2 V and output current of 72 nA (current density of 16 nA/cm(2)) under a compressive strain of 0.23%. These results imply that NaNbO(3) nanowires should be quite useful for large-scale lead-free piezoelectric nanogenerator applications.
This study demonstrated the remote effectiveness of dry needling. Dry needling of a distal myofascial trigger point can provide a remote effect to reduce the irritability of a proximal myofascial trigger point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.