Summary The aim of this study was to examine whether malondialdehyde (MDA) formation, a marker of oxidant stress, is altered in different stages of development of hyperlipidemia and whether it correlates with atherogenic index (AI), an important risk factor of atherosclerosis. Commercial kits were used to measure the levels of lipid profile and antioxidant status in the serum of 15 hyperlipidemic patients and 30 age and sex-matched normolipidemic subjects. The normolipidemic subjects were divided into lower and higher lipid groups according to their blood lipid level. The activities of superoxide dismutase and glutathione peroxidase decreased in higher lipid group compared with lower lipid group, and were even lower in hyperlipidemic subjects. An increase in the levels of MDA, triglycerides, total cholesterol and LDL-C concentration were observed in higher lipid group, and even significantly increased in hyperlipidemic patients. A significant progressive decline in HDL-C concentration was found during hyperlipidemia evolution. There was a positive correlation between MDA and AI (r = 0.61, p<0.05). These data indicate that oxidative stress is an early event in the evolution of hyperlipidemia, and appropriate support for enhancing antioxidant supply in higher lipid subjects may help prevent the course of the disease.
Thermoelectric (TE) materials convert heat energy directly into electricity, and introducing new materials with high conversion efficiency is a great challenge because of the rare combination of interdependent electrical and thermal transport properties required to be present in a single material. The TE efficiency is defined by the figure of merit ZT=(S(2) σ) T/κ, where S is the Seebeck coefficient, σ is the electrical conductivity, κ is the total thermal conductivity, and T is the absolute temperature. A new p-type thermoelectric material, CsAg5 Te3 , is presented that exhibits ultralow lattice thermal conductivity (ca. 0.18 Wm(-1) K(-1) ) and a high figure of merit of about 1.5 at 727 K. The lattice thermal conductivity is the lowest among state-of-the-art thermoelectrics; it is attributed to a previously unrecognized phonon scattering mechanism that involves the concerted rattling of a group of Ag ions that strongly raises the Grüneisen parameters of the material.
Recent research into graphene-based materials is largely focused on graphene quantum dots (GQDs) and their optical properties. A facile method has been developed to extract GQDs from reduced graphene oxide (RGO) by the ozonation pre-oxide method. The as-prepared GQDs, which were 2-5 nm in diameter, exhibited strong fluorescence activity ranging from $355 nm to $440 nm. The prepared GQDs possessed strong fluorescence with quantum yields from 3.18% to 9.48%. What's more, the fluorescence properties of the GQDs could be determined by tuning the pH of the ozonation system. We speculated the mechanisms of ozonation, thermal and hydrothermal treatment. We found that pyrocatechol could lead to fluorescence quenching of the GQDs, which might produce novel potential for the detection of targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.