A facile synthetic strategy for nitrogen-deficient graphitic carbon nitride (g-C N ) is established, involving a simple alkali-assisted thermal polymerization of urea, melamine, or thiourea. In situ introduced nitrogen vacancies significantly redshift the absorption edge of g-C N , with the defect concentration depending on the alkali to nitrogen precursor ratio. The g-C N products show superior visible-light photocatalytic performance compared to pristine g-C N .
Dinitrogen reduction to ammonia using transition metal catalysts is central to both the chemical industry and the Earth's nitrogen cycle. In the Haber–Bosch process, a metallic iron catalyst and high temperatures (400 °C) and pressures (200 atm) are necessary to activate and cleave NN bonds, motivating the search for alternative catalysts that can transform N2 to NH3 under far milder reaction conditions. Here, the successful hydrothermal synthesis of ultrathin TiO2 nanosheets with an abundance of oxygen vacancies and intrinsic compressive strain, achieved through a facile copper‐doping strategy, is reported. These defect‐rich ultrathin anatase nanosheets exhibit remarkable and stable performance for photocatalytic reduction of N2 to NH3 in water, exhibiting photoactivity up to 700 nm. The oxygen vacancies and strain effect allow strong chemisorption and activation of molecular N2 and water, resulting in unusually high rates of NH3 evolution under visible‐light irradiation. Therefore, this study offers a promising and sustainable route for the fixation of atmospheric N2 using solar energy.
Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets are successfully prepared. Under UV-vis irradiation, these nanosheets are superior efficient catalysts for the photoreduction of CO2 to CO with water. The formed oxygen vacancies lead to the formation of coordinatively unsaturated Zn(+) centers within the nanosheets, responsible for the very high photocatalytic activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.