Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by the production of a diverse array of autoantibodies and the dysfunctional activation of the complement system. The specific association between the complement component C3a (C3a) protein and antibodies specific for double-stranded DNA (anti-dsDNA), however, has not been studied in detail to date. This study was thus designed to more fully explore circulating C3a levels in SLE patients. In total, 13 SLE patients were enrolled in this study after having been diagnosed in accordance with the SLICC classification criteria, with 7 and 6 patients respectively exhibiting positivity for anti-dsDNA and anti-Sm autoantibodies. Serum complement component C1q (C1q) and C3a levels in samples from these patients were detected via Western blotting, while other serological, biochemical, and clinical parkers associated with disease activity were detected using standard laboratory techniques. The levels of serum C3a in anti-dsDNA+ patients were significantly elevated as compared to those in anti-Sm+ patients (P < 0.01), and a positive correlation between serum C3a levels and SLE Disease Activity Index scores was detected (P < 0.05, r = 0.6134). C3a levels are correlated with the degree of SLE disease activity and other clinically relevant readouts in SLE patients. C3a levels may also enable the differentiation between inactive and active SLE, while also offering value as an advantageous biomarker for thrombophilia monitoring in SLE patients.
Protein therapeutics have been widely used to treat hematological disorders. With the advent of de novo protein design, protein therapeutics are not limited to ameliorating natural proteins but also produce novel protein sequences, folds, and functions with shapes and functions customized to bind to the therapeutic targets. De novo protein techniques have been widely used biomedically to design novel diagnostic and therapeutic drugs, novel vaccines, and novel biological materials. In addition, de novo protein design has provided new options for treating hematological disorders. Scientists have designed protein switches called Colocalization-dependent Latching Orthogonal Cage–Key pRoteins (Co-LOCKR) that perform computations on the surface of cells. De novo designed molecules exhibit a better capacity than the currently available tyrosine kinase inhibitors in chronic myeloid leukemia therapy. De novo designed protein neoleukin-2/15 enhances chimeric antigen receptor T-cell activity. This new technique has great biomedical potential, especially in exploring new treatment methods for hematological disorders. This review discusses the development of de novo protein design and its biological applications, with emphasis on the treatment of hematological disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.