Direct-current electrical fields (EFs) promote nerve growth and axon regeneration. We report here that at physiological strengths, EFs guide the migration of neuronal stem/progenitor cells (NSPCs) toward the cathode. EF-directed NSPC migration requires activation of Nmethyl-D-aspartate receptors (NMDARs), which leads to an increased physical association of Rho GTPase Rac1-associated signals to the membrane NMDARs and the intracellular actin cytoskeleton. Thus, this study identifies the EF as a directional guidance cue in controlling NSPC migration and reveals a role of the NMDAR/Rac1/ actin signal transduction pathway in mediating EF-induced NSPC migration. These results suggest that as a safe physical approach in clinical application, EFs may be developed as a practical therapeutic strategy for brain repair by directing NSPC migration to the injured brain regions to replace cell loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.