As a global pandemic is inevitable, real-time monitoring of transmission is vital for containing the spread of COVID-19. The main objective of this study was to report the real-time effective reproduction numbers (R(t)) and case fatality rates (CFR) in Europe. Methods: Data for this study were obtained mainly from the World Health Organization website, up to March 9, 2020. R(t) were estimated by exponential growth rate (EG) and time-dependent (TD) methods. 'R0' package in R was employed to estimate R(t) by fitting the existing epidemic curve. Both the naïve CFR (nCFR) and adjusted CFR (aCFR) were estimated. Results: With the EG method, R(t) was 3.27 (95% confidence interval (CI) 3.17-3.38) for Italy, 6.32 (95% CI 5.72-6.99) for France, 6.07 (95% CI 5.51-6.69) for Germany, and 5.08 (95% CI 4.51-5.74) for Spain. With the TD method, the R value for March 9 was 3.10 (95% CI 2.21-4.11) for Italy, 6.56 (95% CI 2.04-12.26) for France, 4.43 (95% CI 1.83-7.92) for Germany, and 3.95 (95% CI 0-10.19) for Spain. Conclusions: This study provides important findings on the early outbreak of COVID-19 in Europe. Due to the recent rapid increase in new cases of COVID-19, real-time monitoring of the transmissibility and mortality in Spain and France is a priority.
The nucleocapsid (N) protein is a structural component of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) and can induce antibody responses in SARS patients during infection. However, it is not known whether SARS-CoV N protein can induce a long persistence of memory T-cell response in human. In this study, we found that peripheral blood mononuclear cells (PBMCs) from fully recovered SARS individuals rapidly produced IFN-gamma and IL-2 following stimulation with a pool of overlapping peptides that cover the entire N protein sequence. The N-specific IFN-gamma(+)CD4(+) T cells were mainly composed of CD45RA(-)CCR7(+)CD62L(-) cells, whereas IFN-gamma(+)CD8(+) memory T cells were mostly contained within CD45RA(+)CCR7(-)CD62L(-) cell population. Epitope mapping study indicated that a cluster of overlapping peptides located in the C-terminal region (amino acids [aa] 331 to 362) of N protein contained at least two different T-cell epitopes. The results indicated that human memory T-cell responses specific for SARS-CoV N protein could persist for 2 years in the absence of antigen, which would be a valuable for the design of effective vaccines against SARS-CoV and for basic studies of human T-cell memory.
Biological oncology products are integral to cancer treatment, but their high costs pose challenges to patients, families, providers, and insurers. The introduction of biosimilar agents—molecules that are similar in structure, function, activity, immunogenicity, and safety to the original biological drugs—provide opportunities both to improve healthcare access and outcomes, and to reduce costs. Several international regulatory pathways have been developed to expedite entry of biosimilars into global marketplaces. The first wave of oncology biosimilar use was in Europe and India in 2007. Oncology biosimilars are now widely marketed in several countries in Europe, and in Australia, Japan, China, Russia, India, and South Korea. Their use is emerging worldwide, with the notable exception of the USA, where several regulatory and cost barriers to biosimilar approval exist. In this Review, we discuss oncology biosimilars and summarise their regulatory frameworks, clinical experiences, and safety concerns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.