Objectives. Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD) throughout the world, and the identification of novel biomarkers via bioinformatics analysis could provide research foundation for future experimental verification and large-group cohort in DN models and patients. Methods. GSE30528, GSE47183, and GSE104948 were downloaded from Gene Expression Omnibus (GEO) database to find differentially expressed genes (DEGs). The difference of gene expression between normal renal tissues and DN renal tissues was firstly screened by GEO2R. Then, the protein-protein interactions (PPIs) of DEGs were performed by STRING database, the result was integrated and visualized via applying Cytoscape software, and the hub genes in this PPI network were selected by MCODE and topological analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out to determine the molecular mechanisms of DEGs involved in the progression of DN. Finally, the Nephroseq v5 online platform was used to explore the correlation between hub genes and clinical features of DN. Results. There were 64 DEGs, and 32 hub genes were identified, enriched pathways of hub genes involved in several functions and expression pathways, such as complement binding, extracellular matrix structural constituent, complement cascade related pathways, and ECM proteoglycans. The correlation analysis and subgroup analysis of 7 complement cascade-related hub genes and the clinical characteristics of DN showed that C1QA, C1QB, C3, CFB, ITGB2, VSIG4, and CLU may participate in the development of DN. Conclusions. We confirmed that the complement cascade-related hub genes may be the novel biomarkers for DN early diagnosis and targeted treatment.
The authenticated key exchange (AKE) protocol can ensure secure communication between a client and a server in the electricity transaction of the Energy Internet of things (EIoT). Park proposed a two-factor authentication protocol 2PAKEP, whose computational burden of authentication is evenly shared by both sides. However, the computing capability of the client device is weaker than that of the server. Therefore, based on 2PAKEP, we propose an authentication protocol that transfers computational tasks from the client to the server. The client has fewer computing tasks in this protocol than the server, and the overall latency will be greatly reduced. Furthermore, the security of the proposed protocol is analyzed by using the ROR model and GNY logic. We verify the low-latency advantage of the proposed protocol through various comparative experiments and use it for EIoT electricity transaction systems in a Metaverse scenario.
Background. Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus and is a major cause of end-stage kidney disease. Cordyceps sinensis (Cordyceps, Dong Chong Xia Cao) is a widely applied ingredient for treating patients with DN in China, while the molecular mechanisms remain unclear. This study is aimed at revealing the therapeutic mechanisms of Cordyceps in DN by undertaking a network pharmacology analysis. Materials and Methods. In this study, active ingredients and associated target proteins of Cordyceps sinensis were obtained via Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and Swiss Target Prediction platform, then reconfirmed by using PubChem databases. The collection of DN-related target genes was based on DisGeNET and GeneCards databases. A DN-Cordyceps common target interaction network was carried out via the STRING database, and the results were integrated and visualized by utilizing Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to determine the molecular mechanisms and therapeutic effects of Cordyceps on the treatment of DN. Results. Seven active ingredients were screened from Cordyceps, 293 putative target genes were identified, and 85 overlapping targets matched with DN were considered potential therapeutic targets, such as TNF, MAPK1, EGFR, ACE, and CASP3. The results of GO and KEGG analyses revealed that hub targets mainly participated in the AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, PI3K-Akt signaling pathway, and IL-17 signaling pathway. These targets were correlated with inflammatory response, apoptosis, oxidative stress, insulin resistance, and other biological processes. Conclusions. Our study showed that Cordyceps is characterized as multicomponent, multitarget, and multichannel. Cordyceps may play a crucial role in the treatment of DN by targeting TNF, MAPK1, EGFR, ACE, and CASP3 signaling and involved in the inflammatory response, apoptosis, oxidative stress, and insulin resistance.
Background. Persistent inflammation has been recognized as an important comorbid condition in patients with chronic kidney disease (CKD) and is associated with many complications, mortality, and progression of CKD. Previous studies have not drawn a clear conclusion about the anti-inflammatory effects of statins in CKD. This meta-analysis is aimed at assessing the anti-inflammatory effects of statins therapy in patients with CKD. Methods. A comprehensive literature search was conducted in these databases (Medline, Embase, Cochrane library, and clinical trials) to identify the randomized controlled trials that assess the anti-inflammatory effects of statins. Subgroup, sensitivity, and trim-and-fill analysis were conducted to determine the robustness of pooled results of the primary outcome. Results. 25 eligible studies with 7921 participants were included in this meta-analysis. The present study showed that statins therapy was associated with a decreased C-reactive protein (CRP) (-2.06 mg/L; 95% CI: -2.85 to -1.27, p < 0.01 ). Subgroup, sensitivity, and trim-and-fill analysis showed that the pooled results of CPR were stable. Conclusion. This meta-analysis demonstrates that statins supplementation has anti-inflammatory effects in patients with CKD. Statins exert an anti-inflammatory effect that is clinically important in improving complications, reducing mortality, and slowing progression in CKD. We believe that the benefits of statins to CKD are partly due to their anti-inflammatory effects. However, stains usually are prescribed in the CKD patients with dyslipidemia, whether statins can reduce inflammation in CKD patients with normal serum lipid needed to explore in the future. Therefore, we suggest that randomized clinical trials need to assess the effect of statins in CKD patients with normal serum lipid. Whether statins can be prescribed for aiming to inhibit inflammation in CKD also needed further study. Trial Registration. The study protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO); registration number: CRD42022310334.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.