It is of significant importance to detect and manage stress before it turns into severe problems. However, existing stress detection methods usually rely on psychological scales or physiological devices, making the detection complicated and costly. In this paper, we explore to automatically detect individuals' psychological stress via social media. Employing real online micro-blog data, we first investigate the correlations between users' stress and their tweeting content, social engagement and behavior patterns. Then we define two types of stress-related attributes: 1) low-level content attributes from a single tweet, including text, images and social interactions; 2) user-scope statistical attributes through their weekly micro-blog postings, leveraging information of tweeting time, tweeting types and linguistic styles. To combine content attributes with statistical attributes, we further design a convolutional neural network (CNN) with cross autoencoders to generate user-scope content attributes from low-level content attributes. Finally, we propose a deep neural network (DNN) model to incorporate the two types of userscope attributes to detect users' psychological stress. We test the trained model on four different datasets from major micro-blog platforms including Sina Weibo, Tencent Weibo and Twitter. Experimental results show that the proposed model is effective and efficient on detecting psychological stress from micro-blog data. We believe our model would be useful in developing stress detection tools for mental health agencies and individuals.
Long-term stress may lead to many severe physical and mental problems. Traditional psychological stress detection usually relies on the active individual participation, which makes the detection labor-consuming, time-costing and hysteretic. With the rapid development of social networks, people become more and more willing to share moods via microblog platforms. In this paper, we propose an automatic stress detection method from cross-media microblog data. We construct a three-level framework to formulate the problem. We first obtain a set of low-level features from the tweets. Then we define and extract middle-level representations based on psychological and art theories: linguistic attributes from tweets' texts, visual attributes from tweets' images, and social attributes from tweets' comments, retweets and favorites. Finally, a Deep Sparse Neural Network is designed to learn the stress categories incorporating the cross-media attributes. Experiment results show that the proposed method is effective and efficient on detecting psychological stress from microblog data.
To solve the acoustic-to-articulatory inversion problem, this paper proposes a deep bidirectional long short term memory recurrent neural network and a deep recurrent mixture density network. The articulatory parameters of the current frame may have correlations with the acoustic features many frames before or after. The traditional pre-designed fixed-length context window may be either insufficient or redundant to cover such correlation information. The advantage of recurrent neural network is that it can learn proper context information on its own without the requirement of externally specifying a context window. Experimental results indicate that recurrent model can produce more accurate predictions for acoustic-to-articulatory inversion than deep neural network having fixed-length context window. Furthermore, the predicted articulatory trajectory curve of recurrent neural network is smooth. Average root mean square error of 0.816 mm on the MNGU0 test set is achieved without any postfiltering, which is state-of-the-art inversion accuracy.Index Terms-long short term memory (LSTM), recurrent nueral network (RNN), mixture density network (MDN), layer-wise pre-training
Recent research in zero-shot speech synthesis has made significant progress in speaker similarity. However, current efforts focus on timbre generalization rather than prosody modeling, which results in limited naturalness and expressiveness. To address this, we introduce a novel speech synthesis model trained on large-scale datasets, including both timbre and hierarchical prosody modeling. As timbre is a global attribute closely linked to expressiveness, we adopt a global vector to model speaker timbre while guiding prosody modeling. Besides, given that prosody contains both global consistency and local variations, we introduce a diffusion model as the pitch predictor and employ a prosody adaptor to model prosody hierarchically, further enhancing the prosody quality of the synthesized speech. Experimental results show that our model not only maintains comparable timbre quality to the baseline but also exhibits better naturalness and expressiveness. The synthesized samples can be found at: https://rxy-j.github.io/HPMD-TTS/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.