To effectively repair or replace damaged tissues, it is necessary to design scaffolds with tunable structural and biomechanical properties that closely mimic the host tissue. In this paper, we describe a newly synthesized photocrosslinkable interpenetrating polymer network (IPN) hydrogel based on gelatin methacrylate (GelMA) and silk fibroin (SF) formed by sequential polymerization, which possesses tunable structural and biological properties. Experimental results revealed that IPNs, where both the GelMA and SF were independently crosslinked in interpenetrating networks, demonstrated a lower swelling ratio, higher compressive modulus and lower degradation rate as compared to the GelMA and semi-IPN hydrogels, where only GelMA was crosslinked. These differences were likely caused by a higher degree of overall crosslinking due to the presence of crystallized SF in the IPN hydrogels. NIH-3T3 fibroblasts readily attached to, spread, and proliferated on the surface of IPN hydrogels as demonstrated by F-actin staining and analysis of mitochondrial activity (MTT). In addition, photolithography combined with lyophilization techniques was used to fabricate 3D micropatterned and porous micro-scaffolds from GelMA-SF IPN hydrogels, furthering their versatility for use in various microscale tissue engineering applications. Overall, this study introduces a class of photocrosslinkable, mechanically robust and tunable IPN hydrogels that could be useful for various tissue engineering and regenerative medicine applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.