NK cell cytotoxicity is controlled by numerous NK inhibitory and activating receptors. Most of the inhibitory receptors bind MHC class I proteins and are expressed in a variegated fashion. It was recently shown that TIGIT, a new protein expressed by T and NK cells binds to PVR and PVR-like receptors and inhibits T cell activity indirectly through the manipulation of DC activity. Here, we show that TIGIT is expressed by all human NK cells, that it binds PVR and PVRL2 but not PVRL3 and that it inhibits NK cytotoxicity directly through its ITIM. Finally, we show that TIGIT counter inhibits the NK-mediated killing of tumor cells and protects normal cells from NK-mediated cytoxicity thus providing an ''alternative self'' mechanism for MHC class I inhibition.inhibitory receptors ͉ natural killers I n contrast to T cells, that possess a single dominant antigen receptor (1), NK cells rely on a vast combinatorial array of receptors to initiate effector functions (2). Both activating and inhibitory receptors expressed on NK cells regulate their activity when interacting with tumors, virus infected cells and bacteria, as well as normal self-cells (2). MHC class I-expressing cells are protected from NK-mediated lysis due to the recognition of various MHC class I proteins by the inhibitory receptors KIR, LIR and CD94-NKG2A (3). Other NK inhibitory receptors which do not interact with MHC class I also exist, such as CEACAM1 and IRp60 (4-8). The significance, however, of these non-MHC class I inhibitory receptors in normal conditions is still unclear. All of the inhibitory receptors share a common immune receptor tyrosinebased inhibitory motif (ITIM) in their cytoplasmic regions, which delivers the inhibitory signal (3).The NK cell-mediated killing is extracted by specific receptors, among which are the natural cytotoxicity receptors (NCRs), which include the NKp30 that interacts with pp65 of human cytomegalovirus (CMV), BAT3 and the recently identified B7-family member B7-H6 (9-11), and the NKp46/NKp44 receptors, which interact with various viral hemagglutinins (12, 13). The NKG2D receptor interacts with MICA, MICB and ULBP 1-5 (14) and NKp80 interacts with AICL (15). In addition, two other receptors, DNAM-1 and CD96, enhance NK cytotoxicity (16,17). Both DNAM-1 and CD96 recognize PVR (CD155), whereas DNAM-1 also recognizes PVRL2 (CD112) (16,17). It was recently shown that a new receptor, named TIGIT, for T cell Ig and ITIM domain, interacts with PVR and its related proteins and that TIGIT inhibits T cell activity indirectly through the manipulation of DC activity (18). Here, we show that TIGIT, through its ITIM, can directly inhibit NK cytotoxicity. ResultsTIGIT Inhibits YTS Killing Through Its ITIM Motif. While searching for new CD28 family-like receptors, based on bioinformatics analysis, we observed that a protein named VSIG9 or VSTM3 in the databases expresses an ITIM motif. We continued to work on this protein and found that it interacts with PVR (CD155) but not with any other NK ligands tested (supporting information (...
Senescent cells, formed in response to physiological and oncogenic stresses, facilitate protection from tumourigenesis and aid in tissue repair. However, accumulation of such cells in tissues contributes to age-related pathologies. Resistance of senescent cells to apoptotic stimuli may contribute to their accumulation, yet the molecular mechanisms allowing their prolonged viability are poorly characterized. Here we show that senescent cells upregulate the anti-apoptotic proteins BCL-W and BCL-XL. Joint inhibition of BCL-W and BCL-XL by siRNAs or the small-molecule ABT-737 specifically induces apoptosis in senescent cells. Notably, treatment of mice with ABT-737 efficiently eliminates senescent cells induced by DNA damage in the lungs as well as senescent cells formed in the epidermis by activation of p53 through transgenic p14ARF. Elimination of senescent cells from the epidermis leads to an increase in hair-follicle stem cell proliferation. The finding that senescent cells can be eliminated pharmacologically paves the way to new strategies for the treatment of age-related pathologies.
Although checkpoint inhibitors that block CTLA-4 and PD-1 have improved cancer immunotherapies, targeting additional checkpoint receptors may be required to broaden patient response to immunotherapy. PVRIG is a coinhibitory receptor of the DNAM/TIGIT/CD96 nectin family that binds to PVRL2. We report that antagonism of PVRIG and TIGIT, but not CD96, increased CD8 þ T-cell cytokine production and cytotoxic activity. The inhibitory effect of PVRL2 was mediated by PVRIG and not TIGIT, demonstrating that the PVRIG-PVRL2 pathway is a nonredundant signaling node. A combination of PVRIG blockade with TIGIT or PD-1 blockade further increased T-cell activation. In human tumors, PVRIG expression on T cells was increased relative to normal tissue and trended with TIGIT and PD-1 expression. Tumor cells coexpressing PVR and PVRL2 were observed in multiple tumor types, with highest coexpression in endometrial cancers. Tumor cells expressing either PVR or PVRL2 were also present in numbers that varied with the cancer type, with ovarian cancers having the highest percentage of PVR À PVRL2 þ tumor cells and colorectal cancers having the highest percentage of PVR þ PVRL2 À cells. To demonstrate a role of PVRIG and TIGIT on tumor-derived T cells, we examined the effect of PVRIG and TIGIT blockade on human tumor-infiltrating lymphocytes. For some donors, blockade of PVRIG increased T-cell function, an effect enhanced by combination with TIGIT or PD-1 blockade. In summary, we demonstrate that PVRIG and PVRL2 are expressed in human cancers and the PVRIG-PVRL2 and TIGIT-PVR pathways are nonredundant inhibitory signaling pathways. See related article on p. 244
Natural Killer (NK) cells form an important arm of the innate immune system and function to combat a wide range of invading pathogens, ranging from viruses to bacteria. However, the means by which NK cells accomplish recognition of pathogens with a limited repertoire of receptors remains largely unknown. In the current study, we describe the recognition of an emerging fungal pathogen, Candida glabrata, by the human NK cytotoxic receptor NKp46 and its mouse ortholog NCR1. Using NCR1 knockout mice, we observed that this receptor-mediated recognition was crucial for controlling C. glabrata infection in vitro and in vivo. Finally, we delineated the fungal ligands to be the C. glabrata adhesins Epa1, Epa6 and Epa7 and demonstrate that clearance of systemic C. glabrata infections in vivo depends on their recognition by NCR1. As NKp46 and NCR1 have been previously shown to bind viral adhesion receptors, we speculate that NKp46/NCR1 may be a novel type of pattern recognition receptor.
Activation of the formyl-peptide receptor-like (FPRL) 1 pathway has recently gained high recognition for its significance in therapy of inflammatory diseases. Agonism at FPRL1 affords a beneficial effect in animal models of acute inflammatory conditions, as well as in chronic inflammatory diseases. TIPMFVPESTSKLQKFTSWFM-amide (CGEN-855A) is a novel 21-amino acid peptide agonist for FPRL1 and also activates FPRL2. CGEN-855A was discovered using a computational platform designed to predict novel G protein-coupled receptor peptide agonists cleaved from secreted proteins by convertase proteolysis. In vivo, CGEN-855A displays anti-inflammatory activity manifested as 50% inhibition of polymorphonuclear neutrophil (PMN) recruitment to inflamed air pouch and provides protection against ischemia-reperfusion-mediated injury to the myocardium in both murine and rat models (36 and 25% reduction in infarct size, respectively). Both these activities are accompanied by inhibition of PMN recruitment to the injured organ. The secretion of inflammatory cytokines, including interleukin (IL)-6, IL-1, and tumor necrosis factor-␣, was not affected upon incubation of human peripheral blood mononuclear cells with CGEN-855A, whereas IL-8 secretion was elevated up to 2-fold upon treatment with the highest CGEN-855A dose only. Collectively, these new data support a potential role for CGEN-855A in the treatment of reperfusionmediated injury and in other acute and chronic inflammatory conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.