Electrochemical energy storage is one of the main societal challenges to humankind in this century. The performances of classical Li-ion batteries (LIBs) with non-aqueous liquid electrolytes have made great advances in the past two decades, but the intrinsic instability of liquid electrolytes results in safety issues, and the energy density of the state-of-the-art LIBs cannot satisfy the practical requirement. Therefore, rechargeable lithium metal batteries (LMBs) have been intensively investigated considering the high theoretical capacity of lithium metal and its low negative potential. However, the progress in the field of non-aqueous liquid electrolytes for LMBs has been sluggish, with several seemingly insurmountable barriers, including dendritic Li growth and rapid capacity fading. Solid polymer electrolytes (SPEs) offer a perfect solution to these safety concerns and to the enhancement of energy density. Traditional SPEs are dual-ion conductors, in which both cations and anions are mobile and will cause a concentration polarization thus leading to poor performances of both LIBs and LMBs. Single lithium-ion (Li-ion) conducting solid polymer electrolytes (SLIC-SPEs), which have anions covalently bonded to the polymer, inorganic backbone, or immobilized by anion acceptors, are generally accepted to have advantages over conventional dual-ion conducting SPEs for application in LMBs. A high Li-ion transference number (LTN), the absence of the detrimental effect of anion polarization, and the low rate of Li dendrite growth are examples of benefits of SLIC-SPEs. To date, many types of SLIC-SPEs have been reported, including those based on organic polymers, organic-inorganic hybrid polymers and anion acceptors. In this review, a brief overview of synthetic strategies on how to realize SLIC-SPEs is given. The fundamental physical and electrochemical properties of SLIC-SPEs prepared by different methods are discussed in detail. In particular, special attention is paid to the SLIC-SPEs with high ionic conductivity and high LTN. Finally, perspectives on the main challenges and focus on the future research are also presented.
Lithium metal (Li ) rechargeable batteries (LMBs), such as systems with a Li anode and intercalation and/or conversion type cathode, lithium-sulfur (Li-S), and lithium-oxygen (O )/air (Li-O /air) batteries, are becoming increasingly important for electrifying the modern transportation system, with the aim of sustainable mobility. Although some rechargeable LMBs (e.g. Li /LiFePO batteries from Bolloré Bluecar, Li-S batteries from OXIS Energy and Sion Power) are already commercially viable in niche applications, their large-scale deployment is hampered by a number of formidable challenges, including growth of lithium dendrites, electrolyte instability towards high voltage intercalation-type cathodes, the poor electronic and ionic conductivities of sulfur (S ) and O , as well as their corresponding reduction products (e.g. Li S and Li O), dissolution, and shuttling of polysulfide (PS) intermediates. This leads to a short lifecycle, low coulombic/energy efficiency, poor safety, and a high self-discharge rate. The use of electrolyte additives is considered one of the most economical and effective approaches for circumventing these problems. This Review gives an overview of the various functional additives that are being applied and aims to stimulate new avenues for the practical realization of these appealing devices.
With a remarkably higher theoretical energy density compared to lithium-ion batteries (LIBs) and abundance of elemental sulfur, lithium sulfur (Li-S) batteries have emerged as one of the most promising alternatives among all the post LIB technologies. In particular, the coupling of solid polymer electrolytes (SPEs) with the cell chemistry of Li-S batteries enables a safe and high-capacity electrochemical energy storage system, due to the better processability and less flammability of SPEs compared to liquid electrolytes. However, the practical deployment of all solid-state Li-S batteries (ASSLSBs) containing SPEs is largely hindered by the low accessibility of active materials and side reactions of soluble polysulfide species, resulting in a poor specific capacity and cyclability. In the present work, an ultrahigh performance of ASSLSBs is obtained via an anomalous synergistic effect between (fluorosulfonyl)(trifluoromethanesulfonyl)imide anions inherited from the design of lithium salts in SPEs and the polysulfide species formed during the cycling. The corresponding Li-S cells deliver high specific/areal capacity (1394 mAh g, 1.2 mAh cm), good Coulombic efficiency, and superior rate capability (∼800 mAh g after 60 cycles). These results imply the importance of the molecular structure of lithium salts in ASSLSBs and pave a way for future development of safe and cost-effective Li-S batteries.
Solid polymer electrolytes (SPEs) comprising lithium bis(fluorosulfonyl)imide (Li[N(SOF)], LiFSI) and poly(ethylene oxide) (PEO) have been studied as electrolyte material and binder for the Li-S polymer cell. The LiFSI-based Li-S all solid polymer cell can deliver high specific discharge capacity of 800 mAh g (i.e., 320 mAh g), high areal capacity of 0.5 mAh cm, and relatively good rate capability. The cycling performances of Li-S polymer cell with LiFSI are significantly improved compared with those with conventional LiTFSI (Li[N(SOCF)]) salt in the polymer membrane due to the improved stability of the Li anode/electrolyte interphases formed in the LiFSI-based SPEs. These results suggest that the LiFSI-based SPEs are attractive electrolyte materials for solid-state Li-S batteries.
Of the various beyond-lithium-ion battery technologies, lithium-sulfur (Li-S) batteries have an appealing theoretical energy density and are being intensely investigated as next-generation rechargeable lithium-metal batteries. However, the stability of the lithium-metal (Li°) anode is among the most urgent challenges that need to be addressed to ensure the long-term stability of Li-S batteries. Herein, we report lithium azide (LiN ) as a novel electrolyte additive for all-solid-state Li-S batteries (ASSLSBs). It results in the formation of a thin, compact and highly conductive passivation layer on the Li° anode, thereby avoiding dendrite formation, and polysulfide shuttling. It greatly enhances the cycling performance, Coulombic and energy efficiencies of ASSLSBs, outperforming the state-of-the-art additive lithium nitrate (LiNO ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.