Water deficit is one of the main limiting factors in apple ( × Borkh.) cultivation. Root architecture plays an important role in the drought tolerance of plants; however, research efforts to improve drought tolerance of apple trees have focused on aboveground targets. Due to the difficulties associated with visualization and data analysis, there is currently a poor understanding of the genetic players and molecular mechanisms involved in the root architecture of apple trees under drought conditions. We previously observed that MdMYB88 and its paralog MdMYB124 regulate apple tree root morphology. In this study, we found that MdMYB88 and MdMYB124 play important roles in maintaining root hydraulic conductivity under long-term drought conditions and therefore contribute toward adaptive drought tolerance. Further investigation revealed that MdMYB88 and MdMYB124 regulate root xylem development by directly binding and promoters and thus influence expression of their target genes under drought conditions. In addition, MdMYB88 and MdMYB124 were shown to regulate the deposition of cellulose and lignin root cell walls in response to drought. Taken together, our results provide novel insights into the importance of MdMYB88 and MdMYB124 in root architecture, root xylem development, and secondary cell wall deposition in response to drought in apple trees.
Because of limited supply of high-quality water, alternative water sources have been used for irrigation in water-scarce regions. However, alternative waters usually contain high salt levels, which can cause salt damage on salt-sensitive plants. A greenhouse study was conducted to evaluate the relative salt tolerance of 10 common ornamental taxa to saline water irrigation. The 10 taxa studied were Chaenomeles speciosa ‘Orange Storm’ and ‘Pink Storm’ (Chaenomeles Double Take™); Diervilla rivularis ‘G2X885411’, ‘G2X88544’ (Diervilla Kodiak®, Black, Orange, and Red, respectively), and ‘Smndrsf’; Forsythia ×intermedia ‘Mindor’ (Forsythia Show Off®); Hibiscus syriacus ‘ILVOPS’ (Hibiscus Purple Satin®); Hydrangea macrophylla ‘Smhmtau’ and ‘Smnhmsigma’ (Hydrangea Let’s Dance® Blue Jangles® and Rave, respectively); and Parthenocissus quinquefolia ‘Troki’ (Parthenociss quinquefolia Red Wall®). Plants were irrigated with a nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solutions at EC of 5.0 or 10.0 dS·m−1 (EC 5 or EC 10) eight times on a weekly basis. The results indicated that the 10 ornamental taxa had different morphological and physiological responses to salinity. The C. speciosa and D. rivularis plants in EC 5 had severe salt foliar damage, whereas those in EC 10 were dead. Hibiscus syriacus ‘ILVOPS’ performed well in EC 5 treatment with a shoot dry weight (DW) reduction of 26%, but those in EC 10 had severe foliar salt damage. Hydrangea macrophylla, F. ×intermedia ‘Mindor’ and P. quinquefolia ‘Troki’ were the most salt tolerant with minor foliar salt damage. The two H. macrophylla cultivars had the highest shoot sodium (Na) and chlorine (Cl) concentrations with a visual quality of 3 (scale 0 to 5 with 0 for dead plants and 5 for excellent performance), indicating that H. macrophylla plants adapted to elevated salinity by tolerating high Na and Cl concentrations in leaf tissue. Forsythia ×intermedia ‘Mindor’ and P. quinquefolia ‘Troki’ had relatively low leaf Na and Cl concentration, indicating that both taxa are capable of excluding Na and Cl. Chaenomeles speciosa and D. rivularis were sensitive to salinity with great growth reduction, severe foliar salt damage, and high Na and Cl accumulation in leaf tissue.
ERAS did not increase 30-day complications compared with CRAS after RC. ERAS may be better than CRAS in terms of bowel movement, tolerance of fluid and regular diet, and ambulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.