Background: We have previously reported that low concentrations of cigarette smoke extract induce DNA damage without leading to apoptosis or necrosis in human bronchial epithelial cells (HBECs), and that IL-6/STAT3 signaling contributes to the cell survival. Since NF-κB is also involved in regulating apoptosis and cell survival, the current study was designed to investigate the role of NF-κB in mediating cell survival in response to cigarette smoke exposure in HBECs.
Reactive nitrogen species (RNS) such as peroxynitrite cause cellular injury and tissue inflammation. Excessive production of nitrotyrosine, which is a footprint of RNS, has been observed in the airways of patients with asthma and chronic obstructive pulmonary disease, disorders characterized by tissue remodeling. The aim of this study was to evaluate whether RNS can affect tissue remodeling through direct effects on fibroblasts, and to determine if these effects depend on production of transforming growth factor-beta (TGF-beta). To accomplish this, human fetal lung fibroblasts (HFL-1) were used to assess fibroblast-mediated contraction of floating gels and chemotaxis toward fibronectin. In addition, the ability of fibroblasts to release TGF-beta1, fibronectin, and vascular endothelial growth factor (VEGF) was assessed by enzyme-linked immunosorbent assay. Authentic peroxynitrite significantly augmented gel contraction (P < 0.01) and chemotaxis (P < 0.01) compared with control in a concentration-dependent manner. Similarly, the peroxynitrite donor 3-morpholynosidenonimine hydrochloride (SIN-1) also augmented gel contraction (P < 0.01). RNS also significantly increased TGF-beta1 (P < 0.01), fibronectin (P < 0.01), and VEGF (P < 0.01) release into the media in both 3D gel and monolayer culture. Anti-TGF-beta antibody reversed RNS-augmented gel contraction (P < 0.01) and mediator production (P < 0.01). Anti-TGF-beta antibody also partially, but significantly, reversed RNS-augmented chemotaxis toward fibronectin (P < 0.01). Finally, peroxynitrite enhanced expression of alpha5beta1 integrin, which is a receptor for fibronectin (P < 0.01), and neutralizing anti-TGF-beta antibody suppressed peroxynitrite-augmented alpha5beta1 expression (P < 0.01). These results suggest that RNS can affect the tissue repair process by modulating TGF-beta1.
Asthmatic airway remodeling is characterized by goblet cell hyperplasia, angiogenesis, smooth muscle hypertrophy, and subepithelial fibrosis. This study evaluated whether acquired changes in fibroblast phenotype could contribute to this remodeling. Airway and parenchymal fibroblasts from control or chronically ovalbumin (OVA)-sensitized and challenged ''asthmatic'' mice were assessed for several functions related to repair and remodeling 6 exogenous transforming growth factor (TGF)-b. All OVA-challenged mouse fibroblasts demonstrated augmented gel contraction (P , 0.05) and chemotaxis (P , 0.05); increased TGF-b 1 (P , 0.05), fibronectin (P , 0.05), and vascular endothelial growth factor (P , 0.05) release; and expressed more a-smooth muscle actin (P , 0.05). TGF-b 1 stimulated both control and asthmatic fibroblasts, which retained all differences from control fibroblasts for all features(P , 0.05, all comparisons). Parenchymal fibroblasts proliferated more rapidly (P , 0.05), while airway fibroblasts proliferated similarly compared with control fibroblasts (P 5 0.25). Thus, in this animal model, OVAchallenged mouse fibroblasts acquire a distinct phenotype that differs from control fibroblasts. The augmented profibrotic activity and mediator release of asthmatic fibroblasts could contribute to airway remodeling in asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.