Triploids are rare in nature because of difficulties in meiotic and gametogenic processes, especially in vertebrates. The Carassius complex of cyprinid teleosts contains sexual tetraploid crucian carp/goldfish (C. auratus) and unisexual hexaploid gibel carp/Prussian carp (C. gibelio) lineages, providing a valuable model for studying the evolution and maintenance mechanism of unisexual polyploids in vertebrates. Here we sequence the genomes of the two species and assemble their haplotypes, which contain two subgenomes (A and B), to the chromosome level. Sequencing coverage analysis reveals that C. gibelio is an amphitriploid (AAABBB) with two triploid sets of chromosomes; each set is derived from a different ancestor. Resequencing data from different strains of C. gibelio show that unisexual reproduction has been maintained for over 0.82 million years. Comparative genomics show intensive expansion and alterations of meiotic cell cycle-related genes and an oocyte-specific histone variant. Cytological assays indicate that C. gibelio produces unreduced oocytes by an alternative ameiotic pathway; however, sporadic homologous recombination and a high rate of gene conversion also exist in C. gibelio. These genomic changes might have facilitated purging deleterious mutations and maintaining genome stability in this unisexual amphitriploid fish. Overall, the current results provide novel insights into the evolutionary mechanisms of the reproductive success in unisexual polyploid vertebrates.
BACKGROUND: As the largest transporter gene family in metazoans, ATP-binding cassette (ABC) transporters regulate the efflux of a broad spectrum of substrates from the cytoplasm to the outside of the cell. In arthropods, ABC transporters are involved in phase III of the detoxification process, and play important roles in the metabolism and transport of insecticides. RESULTS: We identified 54 ABC transporters from the genome and transcriptome of Chilo suppressalis, one of the most damaging pests of rice in China. The identified ABC transporters were classified into eight subfamilies (ABCA to ABCH) based on NCBI BLAST and phylogenetic analysis. Synergism studies showed that treatment with verapamil, a potent inhibitor of ABC transporters, resulted in significantly increased toxicity of chlorantraniliprole against C. suppressalis larvae. Among the 21 tested ABC genes, three ABC transporter genes including CsABCC8, CsABCG1C and CsABCH1 were significantly upregulated after chlorantraniliprole treatment. CONCLUSION: ABC transporters play important roles in the detoxification and transport of chlorantraniliprole in C. suppressalis. The results from our study provide valuable information on C. suppressalis ABC transporters, and are helpful in understanding the roles of ABC transporters in chlorantraniliprole resistance mechanisms in C. suppressalis and other insect pests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.