Hematopoietic stem cells are a group of heterogeneity cells with the potential to differentiate into various types of mature blood cells. Their basic biological properties include quiescence, self-renewal, multilineage differentiation, and homing ability, with the homing of exogenous hematopoietic stem cells after transplantation becoming a new focus, while the first three properties share some similarity in mechanism due to connectivity. In various complex mechanisms, the role of E3 ubiquitin ligases in hematopoietic homeostasis and malignant transformation is receiving increasing attention. As a unique part, E3 ubiquitin ligases play an important role in physiological regulation mechanism of posttranslational modification. In this review, we focus on the recent progress of the crucial role of E3 ubiquitin ligases that target specific proteins for ubiquitination to regulate biological properties of hematopoietic stem cells. Additionally, this paper deals with E3 ubiquitin ligases that affect the biological properties through aging and summarizes the relevant applications of targeting E3 ligases in hematopoietic malignancies. We present some ideas on the clinical application of E3 ubiquitin ligase to regulate hematopoietic stem cells and also believe that it is meaningful to study the upstream signal of these E3 ubiquitin ligases because hematopoietic stem cell dysfunction is caused by deficiency of some E3 ligases.
Acute lymphoblastic leukemia (ALL) has been a huge threat for people's health and finding effective target therapy is urgent and important. WWP2, as one of E3 ubiquitin ligase, is involved in many biological processes by specifically binding to substrates. PARP1 plays a role in cell apoptosis and is considered as a therapeutic target of certain cancers. In this study, we firstly found that WWP2 expressed higher in newly diagnosed ALL patients comparing with complete remission (CR) ALL patients and normal control people, and WWP2 in relapse ALL patients expressed higher than normal control people. WWP2 expression was related with the FAB subtype of ALL and the proportion of blast cells in bone marrow blood tested by flow cytometry. We demonstrated knockout WWP2 inhibited the ALL growth and enhanced apoptosis induced by Dox in vitro and vivo for the first time. WWP2 negatively regulated and interacted with PARP1 and WWP2 mechanically degraded PARP1 through polyubiquitin-proteasome pathway in ALL. These findings suggested WWP2 played a role in ALL development as well as growth and apoptosis, and also displayed a regulatory pathway of PARP1, which provided a new potential therapeutic target for the treatment of ALL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.