S-phase kinase-associated protein-2 (Skp2) is overexpressed in human cancers and associated with poor prognosis. Skp2 acts as an oncogenic protein by enhancing cancer cell growth and tumor metastasis. The present study has demonstrated that small hairpin RNA (shRNA)-mediated downregulation of Skp2 markedly inhibits the viability, proliferation, colony formation, migration, invasion, and apoptosis of human gastric cancer MGC803 cells, which express a high level of Skp2. In contrast, Skp2 shRNA had only a slight effect on the above properties of BGC823 cells, which express a low level of Skp2. In accord, knockdown of Skp2 suppressed the ability of MGC803 cells to form tumors and to metastasize to the lungs of mice, and the growth of established tumors, by inhibiting cell proliferation and enhancing cell apoptosis. In contrast, overexpression of Skp2 promoted tumorigenesis of BGC823 cells in mice. Skp2 depletion induced cell cycle arrest in the G(1)/S phase by upregulating p27, p21, and p57 and downregulating cyclin E and cyclin-dependent kinase 2. Skp2 depletion also increased caspase-3 activity, impeded the ability of cells to form filopoidia and locomote, upregulated RECK (reversion-inducing cysteine-rich protein with kazal motifs), and downregulated matrix metalloproteinase (MMP)-2 and MMP-9 activity and expression. The results suggest that downregulating Skp2 warrants investigation as a promising strategy to treat gastric cancers that express high levels of Skp2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.