The GLASS-JWST Early Release Science (hereafter GLASS-JWST-ERS) Program will obtain and make publicly available the deepest extragalactic data of the ERS campaign. It is primarily designed to address two key science questions, namely, “what sources ionized the universe and when?” and “how do baryons cycle through galaxies?”, while also enabling a broad variety of first look scientific investigations. In primary mode, it will obtain NIRISS and NIRSpec spectroscopy of galaxies lensed by the foreground Hubble Frontier Field cluster, Abell 2744. In parallel, it will use NIRCam to observe two fields that are offset from the cluster center, where lensing magnification is negligible, and which can thus be effectively considered blank fields. In order to prepare the community for access to this unprecedented data, we describe the scientific rationale, the survey design (including target selection and observational setups), and present pre-commissioning estimates of the expected sensitivity. In addition, we describe the planned public releases of high-level data products, for use by the wider astronomical community.
We present the results of a first search for galaxy candidates at z ∼ 9–15 on deep seven-band NIRCam imaging acquired as part of the GLASS-James Webb Space Telescope (JWST) Early Release Science Program on a flanking field of the Frontier Fields cluster A2744. Candidates are selected via two different renditions of the Lyman-break technique, isolating objects at z ∼ 9–11, and z ∼ 9–15, respectively, supplemented by photometric redshifts obtained with two independent codes. We find five color-selected candidates at z > 9, plus one additional candidate with photometric redshift z phot ≥ 9. In particular, we identify two bright candidates at M UV ≃ −21 that are unambiguously placed at z ≃ 10.6 and z ≃ 12.2, respectively. The total number of galaxies discovered at z > 9 is in line with the predictions of a nonevolving luminosity function. The two bright ones at z > 10 are unexpected given the survey volume, although cosmic variance and small number statistics limits general conclusions. This first search demonstrates the unique power of JWST to discover galaxies at the high-redshift frontier. The candidates are ideal targets for spectroscopic follow-up in Cycle-2.
We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called PyStoch on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitationalwave emission from spatially-extended sources. Neither technique found evidence of gravitational-wave signals. Hence we derive 95% confidence-level upper limit sky maps on the gravitational-wave energy flux from broadband point sources, ranging from F α;Θ < ð0.013-7.6Þ × 10 −8 erg cm −2 s −1 Hz −1 , and on the (normalized) gravitational-wave energy density spectrum from extended sources, ranging from Ω α;Θ < ð0.57-9.3Þ × 10 −9 sr −1 , depending on direction (Θ) and spectral index (α). These limits improve upon previous limits by factors of 2.9-3.5. We also set 95% confidence level upper limits on the frequencydependent strain amplitudes of quasimonochromatic gravitational waves coming from three interesting targets, Scorpius X-1, SN 1987A and the Galactic Center, with best upper limits range from h 0 < ð1.7-2.1Þ × 10 −25 , a factor of ≥ 2.0 improvement compared to previous stochastic radiometer searches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.